
Master Thesis

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Computer Science

Mixed-integer Programming in Machine
Learning: Decision Trees and Neural
Networks

Bc. Jiří Němeček

Supervisor: Mgr. Jakub Mareček, Ph.D.
Field of study: Open Informatics
Subfield: Artificial Intelligence
May 2023

ii

Acknowledgements

Firstly, I would like to thank my supervi-
sor Mgr. Jakub Mareček, Ph.D., for his
guidance and pragmatic approach. I also
thank doc. Ing. Tomáš Pevný, Ph.D.,
for his insights regarding the experimen-
tation.

I acknowledge the benefits of being able
to use the RCI Cluster. My ability to
experiment was greatly enhanced because
of it and the people behind it.

Lastly, I sincerely thank everyone who
supports me and those who do not stand
in the way.

This work has received funding from
the European Union’s Horizon Europe re-
search and innovation programme under
grant agreement No. 101084642.

The RCI cluster has been supported
by the OP RDE funded project 380
CZ.02.1.01/0.0/0.0/16_019/0000765 “Re-
search Center for Informatics”.

Declaration

I declare that the presented work was de-
veloped independently, and I have listed
all sources of information used within it in
accordance with the methodical instruc-
tions for observing the ethical principles
in the preparation of university theses.

In Prague, 23. May 2023

. .

Prohlašuji, že jsem předloženou práci
vypracoval samostatně a že jsem uvedl
veškeré použité informační zdroje v
souladu s Metodickým pokynem o do-
držování etických principů při přípravě
vysokoškolských závěrečných prací.

V Praze, 23. 5. 2023

. .

iii

Abstract

In Machine learning (ML), the question
of explainability and fairness is becom-
ing ever more critical. New concepts of
desired properties of ML models are be-
ing introduced and often require looking
for other optimization methods. Mixed-
integer programming (MIP) is one such
optimization method. We overview the
wide use of MIP in ML and explore two
topics in depth.

We mainly contribute with a MIP for-
mulation of a classification tree, focusing
on a fair accuracy distribution over its
leaves. We call the formulation Fair Clas-
sification Tree (FCT). With it, we tackle a
currently overlooked problem. By adding
further models to the leaves of the FCTs,
we show that the extended models have
comparable accuracy to state-of-the-art
models while significantly improving the
explainability of the model.

Secondly, we propose a possible way to
assess the quality of a model’s counter-
factual explanations using a function and
offer its use in model training in search
of balance in explainability and accuracy
at once. Counterfactual explanations are
a post-hoc explanation technique widely
used in fields ranging from finance to
healthcare.

Keywords: mixed-integer programming,
machine learning, fairness, decision trees,
counterfactual explanations

Supervisor: Mgr. Jakub Mareček,
Ph.D.

Abstrakt

Ve strojovém učení se otázka vysvětlitel-
nosti a férovosti stává stále více důležitou.
Nové koncepty požadovaných vlastností
modelů strojového učení jsou představo-
vány a často vyžadují jiné metody pro
optimalizaci. Jednou z takových metod je
smíšené celočíselné programování (MIP).
Vytváříme přehled širokého použití MIP
ve strojovém učení a rozvádíme dvě té-
mata do hloubky.

Primárně představujeme MIP formulaci
rozhodovacího stromu, zaměřenou na fé-
rové rozdělení přesnosti na jeho listech.
Nazývame tuto formulaci Fair Classifi-
cation Tree (FCT). Pomocí ní se zaměřu-
jeme na dosud přehlížený problém. Přidá-
ním dalších modelů do listů FCT ukazu-
jeme, že rozšířené modely mají přesnost
srovnatelnou se současně nejlepšími mo-
dely, zatímco značně zlepšují vysvětlitel-
nost modelu.

Dále představujeme funkci pro hodno-
cení kvality kontrafaktuálních vysvětlení
modelu, kterou nabízíme k použití při
trénování modelu pro hledání rovnováhy
mezi vysvětlitelností a přesností modelu.
Kontrafaktuální vysvětlení jsou post-hoc
vysvětlovací technikou široce používanou
v oblastech od financí po zdravotnictví.

Klíčová slova: smíšené celočíselné
programování, strojové učení, férovost,
rozhodovací stromy, kontrafaktuální
vysvětlení

Překlad názvu: Smíšené celočíselné
programování ve strojovém učení

iv

Contents

1 Introduction 1

1.1 Why MIP? . 2

1.2 Goals of the thesis 3

1.2.1 Use of MIP methods in ML . . 3

1.2.2 Optimizing explanations’
validity in Classification trees 3

1.2.3 Counterfactual generation using
MIP . 3

2 Current use of MIP in ML 5

2.1 Introduction of MIP to ML 5

2.2 Current state of the art 6

2.2.1 Decision trees 7

2.2.2 Neural networks 7

2.2.3 Further uses 8

2.3 MIP in ML explainability 10

2.3.1 Counterfactual explanations . 10

3 Fair explanations using
classification trees 13

3.1 MIP formulation of FCT 14

3.1.1 Optimal Classification Tree
(OCT) formulation 14

3.1.2 Straightforward leaf accuracy
formulation 20

3.1.3 Optimizable formulation 24

3.1.4 Final FCT formulation 27

3.2 Creating the Hybrid trees 28

3.2.1 Tree reduction 30

3.2.2 Leaves extension 30

3.3 Experiments 32

3.3.1 Training modes 33

3.3.2 Datasets used 33

3.4 Results . 34

3.4.1 Comparison to other methods 36

3.4.2 Dependance on dataset
difficulty . 37

3.4.3 Required resources 39

v

3.4.4 Helper methods 41

3.4.5 Other optimization strategies 44

3.4.6 Shorter time. 46

3.4.7 MIP solve process 49

3.4.8 Further Ablation Analyses . . 53

3.4.9 More input data 64

4 Counterfactual optimization 67

4.1 Encoding of the input 68

4.1.1 Mixed polytope 69

4.1.2 Additions to the formulation 70

4.2 Encoding of the neural network . 71

4.2.1 Modifications 72

4.3 Counterfact encoding 72

4.4 Proposed functions 73

4.4.1 Entropy-based functions 73

4.4.2 Wasserstein-based function . . 74

5 Conclusion 77

5.1 Furhter improvements 78

5.2 Resources . 80

A Acronyms 81

B Bibliography 83

C Supplementary material 91

C.1 Dataset descriptions 91

C.2 Hyperparameter search
distributions 92

C.3 Detailed results 94

D Project Specification 99

vi

Figures

3.1 Comparison of FCT tree and
CART tree . 15

3.2 The OCT formulation 21

3.3 The FCT formulation 29

3.4 Tree reduction example 31

3.5 COMPAS performance
comparison . 35

3.6 Aggregated results of the main
configuration of FCT 36

3.7 Comparison of FCT performance
on datasets of varying difficulty . . . 38

3.8 Illustration of memory
requirements 40

3.9 The effect of soft accuracy and tree
reduction on leaf accuracy 41

3.10 Influence of soft accuracy on FCT
performance . 42

3.11 Comparison of the tree size after
reduction . 43

3.12 Comparison of different strategies
for FCT optimization 45

3.13 Comparison of memory
requirements given shorter time for
optimization 47

3.14 Comparison of performance given
shorter time for optimization 48

3.15 Comparison of models with
proposed and default configurations
of Gurobi parameters 50

3.16 Improvement of MIP optimality
gaps in time. 51

3.17 Comparison of performance of
CART with limited and unlimited
depth . 54

3.18 Comparison of the influence of a
minimum of samples in leaves on
accuracy . 55

3.19 Comparison of influence of
warmstart on the performance of
OCT . 57

3.20 Comparison of influence of
warmstart on tree size distributions
on OCT . 58

3.21 Distribution of tree sizes for
shallower FCT trees 59

3.22 Comparison of the influence of
depth on the performance of FCT. 60

3.23 Comparison of memory
requirements of FCTs with various
depths . 61

vii

3.24 Dependence of mean memory
requirement on tree depth 62

3.25 Comparison of CART and FCT
for depth 3 . 63

3.26 Comparison of FCT trained on
more data . 65

C.1 Performance of FCT on individual
categorical datasets 95

C.2 Performance of FCT on individual
numerical datasets 96

Tables

3.1 List of symbols of FCT
formulation . 28

3.2 Improvements of accuracy of FCT
over CART and XGBoost 37

3.3 Comparison of Warmstarted and
Gradual strategies to FCT
optimization 46

3.4 Details of the performance
improvement when setting the
Heuristics parameter 52

3.5 Details of the performance
improvement when setting the
MIPFocus parameter 52

3.6 Detailed comparison of
performance CART with limited and
unlimited depth 53

C.1 List of used datasets 92

C.2 Hyperparameter distributions for
XGBoost . 93

C.3 Hyperparameter distributions for
CART . 94

C.4 Leaf accuracy comparison on
individual categorical datasets 94

C.5 Model accuracy comparison on
individual categorical datasets 95

viii

C.6 Leaf accuracy comparison on
individual numerical datasets 97

C.7 Model accuracy comparison on
individual numerical datasets 98

ix

Chapter 1

Introduction

Artificial Intelligence (AI) is a topic that seems to be getting ever more
important over time. In recent months, with the rise of large language models,
practically everyone is getting into contact with the capabilities of AI [Hu,
2023]. As the broad society learns to work with AI models, the models
must gain users’ trust. The requirements for the capabilities of models are
expanding from pure quantitative performance to a more complex optimization
goal. It often no longer suffices to show that model is accurate. In many
cases, society demands fair treatment, transparency, and accountability.

With great power comes great responsibility. As the interest in AI is rising,
so does the interest in Explainable Artificial Intelligence (XAI). XAI is the
concept of providing the user of an AI model with not only a prediction but
also an explanation. This explanation might be regarding a single prediction
or even broader concepts, such as explaining the model’s weaknesses and
warning the user if a prediction might be wrong. The purpose of this is
to improve understanding and to increase the trustworthiness of AI models
[DARPA, 2016; Saeed and Omlin, 2021]. For some areas, such as healthcare
and security, the existence of high-quality XAI methods is essential to achieve
wide adoption of AI in those areas [Adadi and Berrada, 2018].

One of the primary goals of XAI is delivering good explanations without
sacrificing too much accuracy [Adadi and Berrada, 2018]. That is commonly
believed to be non-trivial. However, Rudin [2019] claims this perceived
trade-off is a myth. Nevertheless, the prevalence of black-box models is
undisputed.

1

1. Introduction
A different term, close to explainability, is interpretability. The distinction

between their meanings varies in existing works. Saeed and Omlin [2021]
review some of them and provide an overarching definition:

“Explainability provides insights to a targeted audience to fulfill a
need, whereas interpretability is the degree to which the provided in-
sights can make sense for the targeted audience’s domain knowledge.”
[Saeed and Omlin, 2021, page 4]

In other words, explainability is the ability of a model to explain its decision
or some of its attributes or features. On the other hand, interpretability is
the ability of users of the model (or other interested people) to understand
the explanations and conclude something from them.

A similar distinction is between local and global explanations. While local
explanations help us understand a decision of a model, global explanations
help us understand the full model, enable us to analyze it, and possibly spot
some inconsistencies or flaws.

The issues of explainability and interpretability of AI models are the
motivating themes of this work.

1.1 Why Mixed-integer programming (MIP)?

MIP and especially Mixed-Integer Linear Programming, which we will consider
mostly, is a very expressive framework of mathematical problem specification.
Mixed-integer linear program is essentially a linear program where at least one
of the variables takes only integer values. General MIP formulation belongs
to the class of NP-complete problems. [Shahrabi Farahani and Lagergren,
2013]

On the one hand, this means that MIP formulations are significantly more
challenging to solve compared to Linear programming. On the other hand,
this enables us to specify any NP-hard problem using MIP and then use
highly optimized general solvers, like CPLEX [Cplex, 2009] or Gurobi [Gurobi
Optimization, LLC, 2023] to obtain the solutions. This capability is the
cornerstone of many applications.

2

.................................. 1.2. Goals of the thesis

1.2 Goals of the thesis

This thesis aims to do three things. Firstly, we wish to provide a quick
overview of the current use of MIP in AI. Secondly, provide the reader with
some propositions for optimization functions regarding counterfactuals. And
lastly, as the central part of the thesis, we introduce a new variant of Hybrid
tree [Zhou and Chen, 2002] with a focus on the balance of explainability and
accuracy.

1.2.1 Use of MIP methods in Machine learning (ML)

Initially, we will do a quick overview of various uses of MIP in ML. For
a more in-depth look, we will refer the reader to further sources, not to
repeat what has been said but to provide an overlooking view. This part
will put focus on the uses of MIP for explainability and interpretability,
describing counterfactual explanations in detail. However, it will not be
focusing exclusively on them only.

1.2.2 Optimizing explanations’ validity in Classification trees

The most significant part of the thesis will touch on the problem of finding
optimal classification trees. We will propose a new MIP formulation that
optimizes a different goal from the most common one, focusing on the validity
of explanations that the tree provides. It will be done by maximizing the leaf
accuracy of the least accurate leaf.

1.2.3 Counterfactual generation using MIP

The second practical topic will concern the generation of counterfactual expla-
nations of the decisions of Artifical Neural networks (NNs). We will introduce
a couple of potential utility functions, based on a set of counterfactuals, aim-
ing to train models with local explanations in mind. This could aid models,
that are not interpretable but can provide counterfactual explanations.

3

1. Introduction
Declaration note. The model regarding the classification trees and global
explanations created in Chapter 3 of the thesis was submitted for review as a
scientific article titled Improving the Validity of Decision Trees as Explanations.
The dates of submission collided with the submission of the thesis. It is
partly similar to Chapter 3, especially with regard to the experiments. The
description here is more detailed.

4

Chapter 2

Current use of MIP in ML

From the discussion of Glover [1986], we can see that because of its ability to
express NP-hard problems, MIP played a role in the development and use of
AI methods. We will concern ourselves strictly with Machine learning (ML)
models. That is by using the definition by Zhou [2021]:

“Machine learning is the technique that improves system performance
by learning from experience via computational methods.” [Zhou,
2021, page 2]

This means we are interested in the algorithms that use data to learn
concepts rather than solving a single complex task with simple, smaller input,
such as planning [Vossen et al., 1999]. We also are not interested in how
ML improves the performance of MIP solvers, although it is a vast area of
research that shows promising results [Khalil et al., 2016; Tang et al., 2020;
Zhang et al., 2023].

2.1 Introduction of MIP to ML

One of the first ML problems to be ever explicitly formulated as a MIP is
clustering [Vinod, 1969]. The task of clustering is typical because it contains

5

2. Current use of MIP in ML
two important ingredients. It can be directly formulated mathematically, and
there is no known effective and optimal algorithm. This, together with the
option to formulate a custom objective function, makes it a good candidate
for MIP. Already Kusiak [1984] proposed 5 different formulations of clustering.
A commonly used MIP approach to general clustering was introduced by
Grötschel and Wakabayashi [1989].

At that time, MIP solvers were not very practical for the applications to
ML methods, which led to some skepticism regarding the usefulness of MIP in
this area. It took many years and a lot of development on the hardware and
software side of MIP solvers to achieve the state it is now. To paint a clearer
picture, Bertsimas and Dunn computed the speedup factor of MIP solvers of
800 billion between 1991 and 2015. That includes both software (1.4 million
by itself) and hardware improvements [Bertsimas and Dunn, 2017].

This delay is further exemplified by the fact that the prestigious journal
Annals of Statistics accepted the first use of MIP for ML in 2014 [Bertsimas
and Mazumder, 2014]. In that work, Bertsimas and Mazumder show a
formulation achieving high-quality solutions on the Least Quantile of Squares
problem, even proving optimality for smaller instances in a reasonable time.

Since then, Rahul Mazumder (and Dimitris Bertsimas) have pioneered the
research of MIP methods in ML. To describe a few more of their influential
works, in 2016, they proposed a MIP approach to subset selection, where they
tremendously improved on the state-of-the-art LASSO method [Bertsimas
et al., 2016]. In 2017, Mazumder and Radchenko introduced a method for min-
imizing the number of non-zero coefficients of linear models. It was expressed
as MIP formulation that outperformed other popular methods, even on non-
trivial sizes. Later, Bandi et al. [2019] introduced a formulation for training
Gaussian Mixture Models that outperforms the Expectation–maximization
algorithm (EM) on multiple datasets. These works contributed significantly
to the advent of MIP in ML techniques.

2.2 Current state of the art

We wish to briefly describe the current state of the use of MIP for ML. Since
we do not aim for a comprehensive survey, the main focus will be on Decision
trees and Artifical Neural networks (NNs). We look into these closely because
further chapters reference and build upon the works presented. Lastly, we
briefly overview some other applications to various fields of ML.

6

................................ 2.2. Current state of the art

2.2.1 Decision trees

Creating an optimal decision tree is a problem from the NP-complete class
[Hyafil and Rivest, 1976]. And since commonly used heuristic algorithms
opt for speed rather than optimality, there is a place for frameworks like
MIP to shine. There are multiple various formulations to choose from.
There is work by Menickelly et al. [2016] that targets classification trees
for data with strictly categorical features. Then there are more general
classification tree formulations, such as the work of Verwer and Zhang [2017]
or Optimal Classification Tree (OCT) by Bertsimas and Dunn [2017] that use
standard real-valued thresholds. The OCT model will be central in Chapter 3.
Additionally, the work of Verwer et al. [2017] formulates regression trees using
MIP. These works also point out that one does not need to optimize just the
standard misclassification error (or mean-squared in case of regression). They
can incorporate more nuanced criteria into the optimization goal.

More recently, new formulations have improved the performance of MIP
solvers in this area, for example, using Binary Programming [Verwer and
Zhang, 2019], or formulations utilizing the max-flow problem [Aghaei et al.,
2020, 2022]. Jo et al. [2023] create a decision tree with interpretability and
fairness in mind.

There are many more formulations of Decision trees [e.g. Alston et al.,
2022; Vos and Verwer, 2022; Blanco et al., 2022; Alès et al., 2022]. To briefly
describe a few selected, D’Onofrio et al. [2023], inspired by Support vector
machines (SVMs), add margins on decisions to the optimization. And Florio
et al. [2022] expand from training decision trees to training decision diagrams.

Decision trees are an active research topic, especially when using MIP meth-
ods. It is due to their excellent interpretability, which is gaining importance
in the current times.

2.2.2 Neural networks

Artifical Neural networks (NNs) are what comes to mind when ML is men-
tioned. Much research has come into perfecting the optimization of NNs, and
attempts to use MIP in this regard are no exception [Simon and Takefuji,
1988; Fischetti and Jo, 2018; Thorbjarnarson and Yorke-Smith, 2021; Sildir
and Aydin, 2022]. Some formulations also contain the capability to optimize
the structure of the NN [Dua, 2010].

7

2. Current use of MIP in ML
For example, Ferber et al. [2020] incorporate a MIP formulation into a

layer of a Neural network.

Mostly, however, MIP is used as an additional tool rather than a tool for
training the NNs directly. In areas where MIP finds its use, such as scheduling
problems, the coalition of the speed of NNs and the global capabilities of
MIP is being explored [Chen et al., 2023]. Or, for example, Zhu et al. [2020]
create an approximation with the NN and use MIP to mend the approximate
solution to a valid one.

Another way of using MIP in tandem with NNs is the formulation of
trained NN as an integer program. This can be used to design new chemical
compounds by having a NN and a desired property and use MIP to search
for input vectors [Akutsu and Nagamochi, 2019]. A similar task is a search
for adversarial examples, which is an important topic for the security of ML
applications [Tjeng et al., 2017].

Because of the broad applicability of MIP on trained NNs, much research
focuses on improving the formulation of the NN computation. E.g., Anderson
et al. [2020] propose multiple formulation improvements to increase the speed
of optimization, and König et al. [2022] use various MIP solver configurations
for a similar purpose.

The last area of the use of MIP for NNs to mention is the quantization.
Quantization is a process of moving a NN model from floating-point numbers
to 8 (or less) bit integers, thus decreasing the size of the model and power
consumption while increasing the speed of inference, thanks to the use of
simpler computation. There are attempts to improve the performance of
quantization with MIP, Hubara et al. [2020] suggest a formulation to optimize
the number of bits to quantize to.

2.2.3 Further uses

There are many areas of ML. Providing a complete and extensive overview is
not the aim of this chapter. To conclude the dense summary of the use of
MIP in ML, we list a few more areas with MIP applications:

. Rule lists are very well-explainable models that can be optimized for
various goals in mind using MIP [Rudin and Ertekin, 2018].

8

................................ 2.2. Current state of the art

. Linear models are one of the simplest ML models. Even though there
are usually better ways of training linear models, one can represent them
using MIP as exemplified by Verwer et al. [2017], where they optimize
for a more complex goal but use linear models re-formularized as MIP..To train robust Support vector machine (SVM), Kurtz [2022] uses MIP to
generate adversarial examples to improve the robustness of the resulting
model.. For general Ensemble models, Bastos et al. [2022] proposed a MIP
formulation oriented on pruning a set of trained models to simplify
the inference and possibly to improve the predictive capabilities of the
ensemble.. In Boosting, Kurtz [2022] propose an algorithm using a MIP formulation
that outperforms classical AdaBoost on challenging datasets..The Clustering formulation of Grötschel and Wakabayashi [1989] has
since been improved by Miyauchi et al. [2018], who reduced the time and
memory requirements. Today, MIP is used for clustering in areas ranging
from customer segmentation [Sağlam et al., 2006] to biology [Han et al.,
2019]. MIP also enables us to solve more advanced clustering problems,
such as (relaxed) correlation clustering [Figueiredo and Moura, 2013;
Queiroga et al., 2021].. Bayesian Networks are also challenging to optimize, which means there
are multiple MIP applications to their optimization [e.g. Cussens, 2011;
Bartlett and Cussens, 2015; Küçükyavuz et al., 2020].. Similarly to Bayesian networks, Markov decision processes are being
optimized using MIP [Albert, 2022].. Semi-supervised learning, a wide area of methods, where at least a semi-
supervised variant of SVM can be optimized using MIP [Demiriz and
Bennett, 2001].. Feature selection is an integral part of Machine Learning processes.
While it can be expressed using MIP, it is often non-tractable to directly
optimize [Bertolazzi et al., 2016]. Regardless, Maldonado et al. [2014]
show that their formulation consistently outperforms other techniques.. In Dimensionality reduction, the sparse principal component analysis
aims to select at most k components to be non-zero. The requirement for
some components to be zero, compared to standard Principal Component
Analysis (PCA), enhances the interpretability of the reduction. The
sparse PCA is NP-hard, which makes it a good fit for MIP [Dey et al.,
2018]..MIP can also introduce new models altogether. An example is the
idea of hyper-boxes instead of hyperplanes and their use for multiclass
classification [Üney and Türkay, 2006].

9

2. Current use of MIP in ML
Seeing all of the provided examples, one can see that MIP is widely used in

ML techniques. Many applications were formulated in the 20th century. And
as solvers are improving their performance, the formulations are becoming
tractable to use for bigger and bigger instances. [Bertsimas and Dunn, 2017]

2.3 MIP in ML explainability

Regarding the Explainability of ML, MIP plays a significant role. For one, it
can provide global optimality to well-interpretable models, such as Decision
trees [Bertsimas and Dunn, 2017] or rule lists [Rudin and Ertekin, 2018]. It
can also improve the explainability by performing optimized sparse PCA and
reducing the number of relevant dimensions of a model [Dey et al., 2018], or
find high-quality sparse linear models [Mazumder and Radchenko, 2017].

The above applications provide a kind of global explanation. Global expla-
nations are called global in the sense that they explain the general (global)
behavior of the model. On the opposite side are local explanations, which
explain a single decision made by the model. An example would be a decision
tree where decisions are based on a single variable compared to a convolutional
NN returning a single channel bitmap, showing what pixels of the input image
influenced the decision the most. Clearly, local explanations are less valuable.
For example, Rudin [2019] calls for more focus on interpretability, which
could be considered the same as global explainability.

Yet, some state-of-the-art models are so complex that explaining them
globally via model extraction methods is not performed for accuracy reasons.
For such models, one turns to local explanations that do not require a loss
in accuracy [Bastani et al., 2019]. Commonly used local explanations are
counterfactual explanations. And MIP can generate various high-quality
counterfactual explanations [Chuang et al., 2023].

2.3.1 Counterfactual explanations

Counterfactual explanations are post-hoc explanations. They suggest what
should change on the input to get the desired output. An example might be a
lender denying a loan and providing a counterfactual explanation, such as “If
your income was 1,000$ higher, your application would be accepted.” These

10

............................... 2.3. MIP in ML explainability

are very valuable pieces of information to the users of ML systems. [Guidotti,
2022]

They are similar to adversarial examples and could be used in this way to
find problems with the systems in place. We often want the counterfactual
explanations to satisfy different desiderata. Guidotti [2022] comprised them
in the following list:

. Validity. The counterfactual change should change the class accordingly..Minimality. It should not be possible to choose fewer changes than the
counterfactual suggests to achieve the same class change.. Similarity. The counterfactual change should not change the input in a
significant way.. Plausibility. The counterfactual change should keep the new input similar
to other points in the dataset. For example, in the loan example, it
should not say to the customer that they should be 250 years old.. Discriminative Power. This means that the counterfactual should help
to understand where the boundary between two classes is.. Actionability. The provided changes should be possible to perform. For
example, it should not suggest having different gender, race, etc.. Causality. The counterfactuals should consistently keep the relationships
between input features. Guidotti [2022] gives an example that the loan
length and interest rate should be changed accordingly together, as is
typical.. Diveristy. If generating multiple counterfactuals, they should cover as
many changes as possible with minimal overlap.

MIP formulations

There are many ways to obtain a counterfactual explanation, but only some
use MIP [Guidotti, 2022]. We can use MIP to generate counterfactuals for NNs
[Mohammadi et al., 2021], oblique decision trees (trees using hyperplanes for
decisions) [Carreira-Perpiñán and Hada, 2021] and even ensembles [Parmentier
and Vidal, 2021].

This comes as no surprise, since all these models can be formulated using
MIP, and what remains is to select the right goal and encoding of the input

11

2. Current use of MIP in ML
vector. Selecting the best goal is a well-researched topic. Ustun et al. [2019]
introduced actionability-focused formulation, Russell [2019] focused on the
diversity of the counterfactuals and the DACE model by Kanamori et al.
[2020] improved their similarity by incorporating the training data distribution
into the process. In their later work, Kanamori et al. [2021] introduce a new
concept of ordering the changes to better suit the needs of the user.

12

Chapter 3

Fair explanations using classification trees

In this chapter, we dive into the area of global explanations. We will optimize
a classification tree with concern for fairness regarding the provided explana-
tions with the tree structure. This will be done directly by adding relevant
constraints to the MIP formulation.

Classification trees are commonly considered to be well-interpretable. [e.g.
Laber et al., 2023] That is because of their inherent structure, which is
very logical and understandable. Trees can be broken down into simple
logical formulae, one per leaf. Feldman [2000] showed that such formulae
are understandable up to the size of around 5-9 literals, meaning trees must
be constrained in depth to be understandable. Limited depth means higher
classification error. And since the tree is trained to minimize the total
misclassification error, it can mean that some leaves have accuracy close to
random selection. This is because more homogeneous parts of the data are
cropped away while the more challenging areas of the sample space remain
in a single leaf. In those leaves, accuracy is very low. An example of this
can be seen in Figure 3.1. The Classification and Regression Trees algorithm
(CART) tree has a leaf with 57.1% accuracy.

We argue that if a sample is classified by a leaf, where the decision is
supported by very low accuracy, the explanation is not fair with regard to
other explanations supported by better accuracy. It makes the explanation
less valid, if not potentially harmful. A user might incorrectly put a lot of
importance on an explanation supported by low accuracy. When a leaf has
low accuracy on training data, its decision can be flipped by introducing just
a few samples of a different class.

13

3. Fair explanations using classification trees
Conventional algorithms, like CART [Breiman et al., 1984], often create

trees with some leaves with low accuracy. This is usually not an issue because
they optimize for the total accuracy of the model, and such low-accuracy
leaves are averaged out. We claim that algorithms like CART, by performing
splits of the highest decrease of gini impurity (or entropy), leave the most
difficult parts of the tree for last. This, in the end, creates a node with low
accuracy containing the “hard” samples. Notice, for example, the CART tree
in Figure 3.1. It has one leaf with significantly worse accuracy compared
to other leaves. The explanations provided by such a leaf are not very
informative.

To address this issue, we aim to find a tree with the highest leaf accuracy.
By leaf accuracy, we mean the least accuracy in a single leaf across all tree
leaves. The MIP formulation of a tree with this goal in mind is what we call
Fair Classification Tree (FCT). After creating this model, the total accuracy is
improved by adding well-performing ML models to each leaf. This extension
in the leaves creates the full hybrid tree (using the naming convention of
Zhou and Chen [2002]). We call a model’s leaf accuracy the accuracy of the
least accurate leaf of the low-depth explainable tree. And we use the term
hybrid-tree accuracy to refer to the total accuracy of the entire model with
the extending models (the hybrid tree).

3.1 MIP formulation of FCT

Finding an optimal classification tree is known to be an NP-complete problem
[Hyafil and Rivest, 1976]. As mentioned earlier, that is not an issue for MIP
solvers since NP-hard problems can be transformed into MIP formulations.

We start with the OCT model introduced by Bertsimas and Dunn [2017]
and extend it into a model that focuses on best interpretability. This means
that each interpretation is supported by the highest possible accuracy. We
will call that model FCT.

3.1.1 OCT formulation

Let us first explain the MIP formulation of OCT according to Bertsimas and
Dunn [2017] in this section.

14

................................3.1. MIP formulation of FCT

Yes NoIf f5 < 99

Yes NoIf f6 < 100

class P
Test: 92.1%
Train: 92.9%

Yes NoIf f7 < 98

NoYes If f8 < 98

Yes NoIf f14 < 10

NoYes If f6 < 120

class N
Test: 100%
Train: 100%

class N
Test: 91.8%
Train: 94.7%

class N
Test: 90.8%
Train: 92.2%

class P
Test: 57.1%
Train: 68.4%

class N
Test: 85.7%
Train: 96.7%

Yes NoIf f5 < 99

Yes NoIf f6 < 104

class P
Test: 86.5%
Train: 87.6%

class N
Test: 98.2%
Train: 98.1%

Yes NoIf f7 < 124

NoYes If f8 < 94

class N
Test: 90.9%
Train: 90.3%

class N
Test: 100%
Train: 100%

class N
Test: 87.1%
Train: 87.8%

Low accuracy

CART after reduction:
Low-depth tree accuracy: 92.17%
Hybrid-tree accuracy: 97.47%

Our model:
Low-depth tree accuracy: 89.39%
Hybrid-tree accuracy: 97.62%

class N
Test: 98.2%
Train: 98.1%

No leaves with
significantly lower accuracy

Figure 3.1: Comparison of a tree created by our method (FCT) and a tree on
the same data, created by CART.

We consider a K classification problem, with n samples with p features
each. We will refer to i-th sample as xi = (xi1, . . . , xip). Each xi has a
corresponding class yi, which takes one value out of the K classes.

Basic structural variables

A classification tree consists of branching nodes and of leaf nodes. We call
these sets of nodes TB and TL, respectively. In branching nodes, we will
model decision-making. With interpretability in mind, we consider so-called
axis-aligned trees. That means every branching node t compares only the
value of a single feature x:j and a threshold bt. This is a more restrictive kind

15

3. Fair explanations using classification trees
of decision-making compared to oblique trees, where decision making based
on a linear combination of all features.

This will be achieved using a set of binary variables atj for all branch nodes
t and all features j. We restrict them in a way that allows a single feature to
be activated for each node:

p∑
j=1

atj = 1, ∀t ∈ TB

Together with selecting a variable, we optimize the threshold. This is repre-
sented by a set of variables bt that take continuous value from the interval
[0, 1] because we consider our data to be normalized to this range.

We now have classification trees, where a branch node decision can now be
conveniently written as xT

i at ⋚ bt. We further presume (in alignment with
Bertsimas and Dunn [2017]) that in case of equality, the sample is assigned
to the right branch. This means, that a sample xi arrives to the left child of
t if xT

i at < bt and to the right child if xT
i at ≥ bt.

Since strict inequalities cannot be used in MIP, the authors use the minimal
difference between different consecutive values of each feature as a small
epsilon that replaces the need for a strict inequality. It is precisely defined as
follows:

ϵj = min
{

x
(i+1)
j − x

(i)
j

∣∣∣x(i+1)
j ̸= x

(i)
j ,∀i ∈ {1, . . . , n− 1}

}
where x

(i)
j is the i-th largest value in the j-th feature.

We also need to represent the assignment of a sample i to a leaf node t.
This is done using a set of binary variables zit. It holds that zit = 1 ⇐⇒
xi is assigned to a leaf t.

Putting all of these things together, we can see the two most important
constraints which will ensure the correct function of the branching:

aT
mxi ≥ bm − (1− zit) (3.1)

aT
m(xi + ϵ) ≤ bm + (1 + ϵmax)(1− zit) (3.2)

where i ∈ {1, . . . , n}, t ∈ TL and m ∈ TB is the node in which we decide to
go right (3.1) or left (3.2). We will call these sets of ancestors of a node t
with the node t to their left and right AL(t) and AR(t), respectively. These
sets are disjoint, and their union is the set of all ancestors of a leaf t. ϵmax is

16

................................3.1. MIP formulation of FCT

the highest value of ϵj over all j and serves as the best big-M bound. ϵ is a
p-dimensional vector consisting of ϵj .

We must further ensure that samples are assigned to exactly one leaf. This
is done by the following constraint:∑

t∈TL

zit = 1

Extra structural variables

We want to allow the solver to ignore some nodes. Though we represent the
complete binary tree, we do not require to get a complete tree as a result.
Thus, we add binary variables to signal if a specific node is used or not.

For branching nodes, these will be variables dt. We enforce their property
by constraining at and bt to be equal to zero if dt = 0. This should lead to
all samples being sent to the right subtree according to Bertsimas and Dunn
[2017], but it introduced a flaw in the formulation, as will be discussed later
in Section 3.1.1.

p∑
j=1

ajt = dt, ∀t ∈ TB (3.3)

bt ≤ dt, ∀t ∈ TB (3.4)

We also ensure that child nodes of an unused node are also unused with the
following constraint:

dt ≤ dp(t), ∀t ∈ TB\{root} (3.5)

where p(t) is the parent node of node t. The variable dt also enables us to
use the number of nodes as an optimization parameter.

Regarding a similar variable for leaf nodes, we introduce binary variables
lt that reflect the emptiness of a leaf t.

lt =
{

1 if
∑n

i=1 zit > 0
0 if

∑n
i=1 zit = 0

This is done using the zit variables in the following set of constraints:

zit ≤ lt, ∀i ∈ {1, . . . , n}, ∀t ∈ TL (3.6)

17

3. Fair explanations using classification trees
We now use this variable lt to introduce a limit on the minimal amount of

samples assigned to each leaf.
n∑

i=1
zit ≥ Nminlt, ∀t ∈ TL (3.7)

where Nmin is the minimal amount of samples assigned to a leaf.

To enable the computation of the misclassification error, we must know the
classification of each sample. First, we aggregate the number of samples in a
leaf t. Bertsimas and Dunn name this Nt and write the following constraints:

Nt =
n∑

i=1
zit, ∀t ∈ TL (3.8)

Then we aggregate the number of samples of a certain class k in a leaf t.
Bertsimas and Dunn call this variable Nkt.

Nkt =
n∑

i=1
Yikzit, ∀k ∈ {1, . . . , K}, ∀t ∈ TL (3.9)

where Yik is equal to 1 if yi = k. Equivalently:

Yik =
{

1 if yi = k

0 if yi ̸= k
∀i ∈ {1, . . . , n}, ∀k ∈ {1, . . . , K} (3.10)

The formulation of the constraint (3.9) and the definition of Y (3.10) are
different from the original formulation by Bertsimas and Dunn [2017] from
which we otherwise did not diverge. This is just a simplification of the original.
Both are mathematically equivalent.

Classification variables

Lastly, we introduce a variable representing the class assigned to a leaf. This
is done by a set of binary variables ckt, which can be interpreted as true if
leaf t is assigned a class k. We ensure that only one class is assigned and that
no class is assigned to an empty leaf.

K∑
k=1

ckt = lt, ∀t ∈ TL (3.11)

18

................................3.1. MIP formulation of FCT

Finally, we obtain information about the number of misclassified samples
or misclassification loss. Bertsimas and Dunn name the new variable Lt. We
need it to take the value of the minimal difference between the total number
of samples in a leaf Nt and the number of samples of any class. The class
satisfying the minimal difference will be the selected class k for which ckt = 1.
This is achieved using these constraints:

Lt ≥ Nt −Nkt − n(1− ckt), ∀k ∈ {1, . . . , K}, ∀t ∈ TL (3.12)
Lt ≤ Nt −Nkt − nckt, ∀k ∈ {1, . . . , K}, ∀t ∈ TL (3.13)
Lt ≥ 0, ∀t ∈ TL (3.14)

where n is the size of the training set and serves as a sufficiently high big-M
constant. The constraints (3.14) are important for empty leaves. Otherwise,
we might get arbitrarily low loss using a single empty leaf.

We conclude this introduction of OCT model by formulating the objective
function:

min 1
L̂

∑
t∈TL

Lt + α
∑

t∈TB

dt (3.15)

Where L̂ is the loss obtained by a simple majority classifier, essentially n
minus the number of samples of the most represented class. It is used to
“normalize” the first summand of the optimized function. This makes the
coefficient α independent of dataset size. [Bertsimas and Dunn, 2017]

Formulation flaw

Until now, the described formulation was the work of Bertsimas and Dunn
[2017] with only one constraint slightly changed for better understanding.
However, after implementing this formulation, we uncovered a flaw in the
formulation. It is trivially solved with 0% error by dm = 0, ∀m ∈ TB.

Consider the following. A sample xi is assigned to a leaf t. This means,
that zit = 1, and thus branch decision constraints (3.1) and (3.2) simplify to
aT

mxi ≥ bm and aT
m(xi + ϵ) ≤ bm respectively, for any ancestor m for which

it holds that dm = 0. There is nothing in the way of trivially satisfying both
of these with am = 0 and bm = 0. Solver thus sets all dm to 0 to enable all
am = 0 and proceeds by assigning all samples of each class to a single leaf,
achieving seemingly 100% accuracy.

A proposed solution to this issue is to change the decision constraint from

19

3. Fair explanations using classification trees
(3.2) to

aT
m(xi + ϵ̄) + ϵmin ≤ bm + (1 + ϵmax)(1− zit),
∀i ∈ {1, . . . , n}, ∀t ∈ TL, ∀m ∈ AL(t)

(3.16)

where ϵmin is the lowest value of ϵj and ϵ̄j = ϵj − ϵmin. ϵ̄ is essentially the
same vector as ϵ but with all values decreased by ϵmin.

This constraint is not satisfiable if dm = 0 and any leaf t such that m ∈ AL(t)
is assigned any data sample (zit = 1). This holds because all ϵj > 0 and thus
also ϵmin > 0. This results in the grouping of samples in the rightmost leaf of
a subtree with m as a root. This is what Bertsimas and Dunn [2017] claimed
should happen.

This change in the formulation will not influence the results otherwise,
since if dm = 1, there is amj = 1 for exactly one j, and removed and added
ϵmin will cancel out.

Although this is a valid correction of the issue, we were not interested
in optimizing the number of decision tree nodes, so we went for a more
straightforward solution to this issue and discarded the dt variable altogether
in further extending formulations. In all places where dt was present, we
swapped it for 1. By this, we force all decision nodes to branch. To include
non-complete trees, we prune them after MIP optimization.

Complete model

Now that we have described all parts of the OCT formulation, the complete
formulation is in Figure (3.2).

In our tests using the OCT formulation, we did not use the number of
branch nodes. We used the model with the original constraint (3.2) for the
decision bound to the left child and replaced the variable dt with 1 and α = 0
for the purposes of optimization.

3.1.2 Straightforward leaf accuracy formulation

The model described in the previous section is the basis for our work. The
initial implementation of our desideratum consisted of a simple hard constraint

20

................................3.1. MIP formulation of FCT

min 1
L̂

∑
t∈TL

Lt + α
∑

t∈TB

dt

s. t. Lt ≥ Nt −Nkt − n(1− ckt) ∀k ∈ {1, . . . , K}, ∀t ∈ TL

Lt ≤ Nt −Nkt − nckt ∀k ∈ {1, . . . , K}, ∀t ∈ TL

Lt ≥ 0 ∀t ∈ TL

Nkt =
n∑

i=1
Yikzit ∀k ∈ {1, . . . , K}, ∀t ∈ TL

Nt =
n∑

i=1
zit ∀t ∈ TL

lt =
K∑

k=1
ckt ∀t ∈ TL

aT
mxi ≥ bm − (1− zit) ∀i ∈ {1, . . . , n}, ∀t ∈ TL,∀m ∈ AR(t)

aT
m(xi + ϵ̄) + ϵmin ≤

bm + (1 + ϵmax)(1− zit) ∀i ∈ {1, . . . , n}, ∀t ∈ TL,∀m ∈ AL(t)∑
t∈TL

zit = 1 ∀i ∈ {1, . . . , n}

zit ≤ lt ∀i ∈ {1, . . . , n}, ∀t ∈ TL

n∑
i=1

zit ≥ Nminlt ∀t ∈ TL

p∑
j=1

ajt = dt ∀t ∈ TB

0 ≤ bt ≤ dt ∀t ∈ TB

dt ≤ dp(t) ∀t ∈ TB\{root}
zit, lt ∈ {0, 1} ∀i ∈ {1, . . . , n}, ∀t ∈ TL

ajt, dt ∈ {0, 1} ∀j ∈ {1, . . . , p}, ∀t ∈ TB

ckt ∈ {0, 1} ∀k ∈ {1, . . . , K}, ∀t ∈ TL

Figure 3.2: The OCT formulation. For a detailed explanation, see the expla-
nation in Section 3.1.1 or the original paper itself [Bertsimas and Dunn, 2017].
There is a minor correction of the original in the red constraint. It is changed
according to the formulation issue discussed in Section 3.1.1.

21

3. Fair explanations using classification trees
on leaf accuracy.

Lt ≤ Nt(1−Ah), ∀t ∈ TL (3.17)
where Ah is the desired accuracy in leaves.

The model with added constraints (3.17) is infeasible for some Ah. Take,
for example, a tree of depth 1 and a training set with a single feature, where
x = [1, 2, 3] and y = [1, 0, 1]. For Ah > 2

3 , the model is infeasible.

Since we do not really need to minimize the misclassification error, we also
tested a version where we omit the optimization goal and focus solely on
feasibility.

This constrained model was used in a kind of halving algorithm or bisection.
We search for the maximal Ah for which the model is feasible. Trivially, we
know that for Ah = 1

K , the model will always be satisfiable because we
can always assign the most common class in each leaf. Similarly, we know
that the upper bound on accuracy is, by definition, 1. We then halve the
interval, looking for the boundary between feasible and infeasible models. See
Algorithm 1 for exact pseudocode.

Algorithm 1: Halving algorithm
Input: K // Number of classes
Input: p // Desired precision of the result
Output: Ah∗ // Best achievable leaf accuracy

1 L← 1
K

2 U ← 1
3 while U − L > p do
4 M ← L+U

2
5 if MIP formulation with Ah = M is feasible then
6 L←M

7 else
8 U ←M

9 return L

Needless to say, this is not the best way of using MIP. The solver takes a
long time even to decide on feasibility. In practice, this meant we gave the
solver around one hour to decide whether a model was feasible and assumed
infeasibility otherwise.

Even like this, the algorithm takes several hours to get to an accurate
enough estimate. Assume we want to be precise up to a tenth of a percent,
equivalent to an accuracy of 0.001. Assuming we perform binary classification,

22

................................3.1. MIP formulation of FCT

it takes 9 runs of the solver to obtain the result. That means 9 hours if we
use an objective function and a bit less if we don’t. The way to compute in
general the number of iterations is the following:

nruns =
⌈

log
(

1− 1
K

p

)⌉
(3.18)

The algorithm’s time complexity means shortening the time given to a
single MIP formulation run, which meant worse results. That was naturally
our next focus.

Soft accuracy formulation

One interesting way of improving the potential of the solver to find good
solutions was the proposal to set up a softer constraint on leaf accuracy.
It consisted of relaxed demand on accuracy in leaves with fewer assigned
training samples. We set a threshold Hthresh as the number of samples in a
leaf for which to use the standard accuracy (we refer to it as hard accuracy).
When there are fewer samples than Hthresh, soft accuracy is used instead.
Hard accuracy Ah

t in a leaf t is computed as follows:

Ah
t = Nkt

Nt
, k ∈ {1, , K} s.t. ckt = 1

And the soft accuracy As
t is computed like this:

As
t = Nkt

Hthresh , k ∈ {1, , K} s.t. ckt = 1

Considering the Ah as a parameter of the model, the soft accuracy formu-
lation is achieved by comparing the number of misclassified samples Lt to
the maximal number of misclassified samples Lthresh = Hthresh(1−Ah).

Now let us introduce the MIP formulation. Firstly, we need a binary
variable ht that holds true if hard accuracy is used in a node t.

ht =
{

1 if Nt ≥ Hthresh

0 if Nt < Hthresh

We force this behavior using the constraints:

ht ≤
Nt

Hthresh ∀t ∈ TL (3.19)

ht ≥
Nt −Hthresh + 1

n
∀t ∈ TL (3.20)

23

3. Fair explanations using classification trees
The constraints (3.19) sets the ht to 0 when the number of samples in the leaf
is less than a threshold, and the constraints (3.20) pushes it to 1 for values
above the threshold, while normalizing by n to keep the value below 1. The
+1 in the numerator ensures that for Nt = Hthresh the value ht is set to 1.

Having the ht variable set, we can continue by replacing the simple con-
straint on accuracy (3.17) with the following constraints:

Lt ≤ Hthresh(1−Ah) + nht ∀t ∈ TL (3.21)
Lt ≤ Nt(1−Ah) + n(1− ht) ∀t ∈ TL (3.22)

where n is used as a big-M constant. We can see the resemblance to the
original formulation (3.17) that now splits into two that are made tighter or
looser, based on the value of ht.

This was a semi-successful approach as it improved the quality of the
solutions. Still, it did not solve the issue of time complexity and general
oddity of the bisection approach.

3.1.3 Optimizable formulation

The clear next step was to create a formulation that could optimize leaf
accuracy in the MIP solver.

This is non-trivial because accuracy is defined as the number of samples
with the correct class divided by the number of all samples. Both of these
values are represented using variables in our formulation, so if we were to
set accuracy as a variable to optimize directly, we would not be able to
linearize the equation. In OCT formulation, the total number of samples is a
parameter, so it is easier to state the optimization goal.

To obtain accuracy in a different way, we introduce concepts of accuracy
potential and accuracy contribution. Accuracy potential sit is the accuracy
that one sample xi can contribute to a leaf t. Looking at the value for a
single leaf t, it is equal to 0 for samples not assigned to the leaf t and has the
same value as all other samples assigned to the leaf t. It also sums to 1 for
every node t. This is the potential amount of accuracy it can contribute to
the leaf accuracy of t.

Accuracy contribution Sit is the accuracy a sample xi contributes to the

24

................................3.1. MIP formulation of FCT

accuracy of leaf t. It equals sit if the leaf t classifies xi correctly. In terms of
the formulation, if ckt = 1 for k = yi.

To describe the MIP formulation of accuracy potential sit, we first state
the requirements:..1. must be between 0 and 1 inclusive..2. must sum to 1 for each leaf t to represent a 100% leaf accuracy..3. must be 0 for samples unassigned to node t..4. must be equal for all samples assigned to the node t

We satisfy the first three requirements simply with the following set of
constraints:

0 ≤ sit ≤ 1 ∀i ∈ {1, . . . , n}, ∀t ∈ TL (3.23)
n∑

i=1
sit = lt ∀t ∈ TL (3.24)

sit ≤ zit ∀i ∈ {1, . . . , n}, ∀t ∈ TL (3.25)

We sum them to lt instead of 1 to ensure the possibility of having empty
leaves. Since empty leaves have no assigned samples, all sit for such leaves t
would be equal to zero, and their sum could never be equal to 1.

The last requirement is the tricky one. We started with the following
straightforward formulation:

sit ≤ sjt + (2− zit − zjt) ∀i, j ∈ {1, . . . , n}, ∀t ∈ TL

sit ≥ sjt + (zit + zjt − 2) ∀i, j ∈ {1, . . . , n}, ∀t ∈ TL
(3.26)

Which suffers from the fact that it contains O(n2) constraints, which increases
the total complexity from linear to quadratic with respect to the size of training
data.

To keep the size complexity linear for FCT, just as is the case with OCT,
we introduce a reference potential rt for each leaf t. This reference will serve
as the common value to which all samples assigned will relate their values.
We replace constraints (3.26) with this formulation:

rt ≤ sit + (1− zit), ∀i ∈ {1, . . . , n}, ∀t ∈ TL

rt ≥ sit + (zit − 1), ∀i ∈ {1, . . . , n}, ∀t ∈ TL
(3.27)

25

3. Fair explanations using classification trees
Which is linear in size depending on n. We finally satisfied all four require-
ments of the accuracy potential effectively.

As a next step, we define accuracy contribution Sit as accuracy that a
sample contributes to the leaf accuracy t. Its value will be either equal to sit

or 0 depending on whether the sample is of the class assigned to the leaf or
not. The constraints to ensure that are the following:

0 ≤ Sit ≤ sit ∀i ∈ {1, . . . , n}, ∀t ∈ TL (3.28)

Sit ≤
K∑

k=1
Yikckt ∀i ∈ {1, . . . , n}, ∀t ∈ TL (3.29)

Sit ≥ sit +
K∑

k=1
Yikckt − 1 ∀i ∈ {1, . . . , n}, ∀t ∈ TL (3.30)

where the
∑K

k=1 Yikckt will always evaluate to cyit which is the binary value
signalling whether node t is assigned the class of the sample xi, that is yi. If
so, constraint (3.29) will allow for higher than 0 values, and constraint (3.30)
becomes a tight lower bound on Sit.

What remains is to sum the accuracy contributions and obtain the minimal
leaf accuracy of all leaves. We call the variable Q. The set of constraints
ensuring that we have the minimum is the following:

Q ≤
n∑

i=1
Sit + (1− lt), ∀t ∈ TL (3.31)

where the (1− lt) summand corrects the issue of empty leaves having accuracy
0 in the formulation by setting this constraint to 1 in order for them to not
influence the result. Since all samples must be assigned to some leaf, it cannot
happen that all leaves are empty, and the perceived leaf accuracy would go
to 1.

We do not need to give a lower bounding constraint to Q because it will
be the sole part of our maximization objective:

max Q (3.32)

This ensures that Q will be equal to the maximal possible value, which is the
leaf accuracy value, thanks to the constraints (3.31).

26

................................3.1. MIP formulation of FCT

Soft accuracy constraints

Since we used soft constraints in the previous formulation variant, we imple-
mented them here as well. We use the same constraints (3.19) and (3.20) for
variable ht. And for the soft accuracy itself, we replace the desired accuracy
Ah with our variable Q in the constraints (3.21):

Lt ≤ Hthresh(1−Q) + nht, ∀t ∈ TL (3.33)

the change is highlighted in blue. These constraints remain linear since
Hthresh is a parameter of the formulation.

We further add another conditional to the constraints (3.31) on leaf accuracy
Q to make them trivially satisfied for leaves that use the soft accuracy:

Q ≤
n∑

i=1
Sit + (1− lt) + (1− ht), ∀t ∈ TL (3.34)

the changes are again highlighted in blue.

This addition to the formulation was also used for some testing, as will be
presented in Section 3.4. Otherwise, our formulation reached its final form,
as there is not much more to be done to improve it. We optimize directly
the criterion we want in one go, and the formulation has not asymptotically
increased in size, compared to OCT.

3.1.4 Final FCT formulation

The version of the formulation that has shown the best results is the variant
that directly maximizes the leaf accuracy. The variant using soft accuracy has
had worse results compared to the simpler version. More on these findings in
Section 3.4.

We present a complete formulation of the FCT model in Figure 3.3. It is the
most successful variant proposed. The implementation of tree functioning is
taken from the OCT formulation by Bertsimas and Dunn [2017]. Those parts
are in black. We do not use the dt variable, so the formulations representing
the branching nodes are the same as in the OCT model. And where dt was
used originally, it is replaced by 1. The changes are in blue.

27

3. Fair explanations using classification trees
Symbol Explanation Size

Params Yik Equal 1 for true class of a sample n×K
xi Input samples n× p
ϵ Minimal change in feature values p

ϵmax Maximal value of ϵ 1
Nmin Minimum of samples in a leaf 1
TL Set of leaf nodes 2d

TB Set of decision (branching) nodes 2d − 1
AL(t) Ancestors of leaf t that decide left ≤ d− 1
AR(t) Ancestors of leaf t that decide right ≤ d− 1

Variables Q Tree’s leaf accuracy 1
sit Accuracy potential of xi in leaf t n× 2d

Sit Accuracy contribution of xi in leaf t n× 2d

rt Reference accuracy for s:t 2d

zit Assignment of xi to leaf t n× 2d

lt Non-emptiness of leaf t 2d

ckt Assignment of class k to leaf t K × 2d

ajt 1 if deciding on feature j in node t p× |TB|
bt Decision threshold in node t 2d − 1

Table 3.1: Description of MIP symbols used in the FCT formulation in Figure
3.3. Parameter n refers to the number of samples, K is the number of classes, p
is the number of features, and d is the depth of the tree.

Additionally removed from the OCT formulation were variables (and their
respective constraints) regarding the misclassification loss Lt, number of
samples in a leaf Nt, and the number of samples of a particular class in a leaf
Nkt.

In their place, we added variables and constraints regarding accuracy
potential sit, accuracy contribution Sit, and Q, the leaf accuracy itself. All
completely new constraints and formulations are in purple.

3.2 Creating the Hybrid trees

Having optimized the tree using MIP, we will continue by doing two things.
The first one is the reduction of the tree. It is a simple transformation of
the tree to an equivalent form in terms of total accuracy. It usually removes
some leaves since the MIP solving process creates a complete binary tree, and
some are often redundant.

28

............................... 3.2. Creating the Hybrid trees

max Q

s. t. Q ≤
n∑

i=1
Sit + (1− lt) ∀t ∈ TL

sit ≤ zit ∀i ∈ {1, . . . , n}, ∀t ∈ TL

rt ≤ sit + (1− zit) ∀i ∈ {1, . . . , n}, ∀t ∈ TL

rt ≥ sit + (zit − 1) ∀i ∈ {1, . . . , n}, ∀t ∈ TL

Sit ≤ sit ∀i ∈ {1, . . . , n}, ∀t ∈ TL

Sit ≤
K∑

k=1
Yikckt ∀i ∈ {1, . . . , n}, ∀t ∈ TL

Sit ≥ sit +
K∑

k=1
Yikckt − 1 ∀i ∈ {1, . . . , n}, ∀t ∈ TL

lt =
n∑

i=1
sit ∀t ∈ TL

lt =
K∑

k=1
ckt ∀t ∈ TL

aT
mxi ≥ bm − (1− zit) ∀i ∈ {1, . . . , n}, ∀t ∈ TL,∀m ∈ AR(t)

aT
m(xi + ϵ) ≤

bm + (1 + ϵmax)(1− zit) ∀i ∈ {1, . . . , n}, ∀t ∈ TL,∀m ∈ AL(t)∑
t∈TL

zit = 1 ∀i ∈ {1, . . . , n}

zit ≤ lt ∀i ∈ {1, . . . , n}, ∀t ∈ TL

n∑
i=1

zit ≥ Nminlt ∀t ∈ TL

p∑
j=1

ajt = 1 ∀t ∈ TB

0 ≤ bt ≤ 1 ∀t ∈ TB

zit, lt ∈ {0, 1} ∀i ∈ {1, . . . , n}, ∀t ∈ TL

ajt ∈ {0, 1} ∀j ∈ {1, . . . , p}, ∀t ∈ TB

ckt ∈ {0, 1} ∀k ∈ {1, . . . , K}, ∀t ∈ TL

0 ≤ Q, rt, Sit, sit ≤ 1 ∀i ∈ {1, . . . , n}, ∀t ∈ TL

Figure 3.3: Full FCT formulation. What each constraint represents has been
explained extensively in Section 3.1. In black are the original constraints of
OCT by Bertsimas and Dunn [2017], with minor edits in blue. In purple are our
additions to the formulation that complete the FCT. For explanations of the
symbols, refer to Table 3.1 or descriptions above.

29

3. Fair explanations using classification trees
The second step is then the extension. We take data assigned to every

leaf and train new models on those samples, creating the hybrid tree. This
improves the model’s accuracy to levels comparable to using accuracy-oriented
models. The slight difference in accuracy is lost to improve the fairness of
the explanations provided by the tree.

3.2.1 Tree reduction

The reduction of the tree is done by iterative removal of leaves. We combine
all sibling leaves assigned the same class and remove all empty leaves. This is
done recursively until no further leaves can be removed.

This process decreases the number of splits in the tree and increases the
number of samples in leaves, giving more capability to learn good extending
models. While not reducing the overall accuracy of the tree, it can also
improve the leaf accuracy since we are interested only in the minimum
accuracy.

To illustrate this step, see the example in Figure 3.4.

3.2.2 Leaves extension

After the FCT is reduced to the simplest yet equivalent form, it is time to
extend it. We go through all leaves and use the training data assigned to
each leaf to train a further model.

For our purposes, we used the XGBoost [Chen and Guestrin, 2016] model
that has been shown to perform the best on mid-sized datasets [Grinsztajn
et al., 2022].

To optimize the XGBoost models, we do a Bayesian search for 50 iterations
to search for the most suitable hyperparameters of the model. The used
distributions are in Appendix C.2. Every configuration is trained on 3-fold
cross-validation on the corresponding data. The best hyperparameters from
the search are then used to train the leaf-extending model on all assigned
training data. If a leaf has 100% accuracy, we cannot train anything and keep
the class assigned to the leaf. If a leaf does not have enough samples of one

30

............................... 3.2. Creating the Hybrid trees

[0] ? 6.9997

[0] ? 1.9996

<

[0] ? 1

≥

100% (1 / 1)
class 1

<

60% (3 / 5)
class 1

≥

100% (0 / 0)
class 1

<

100% (2 / 2)
class 0

≥

(a) : Tree before the reduction.

[0] ? 6.9997

66.7% (4 / 6)
class 1

<

100% (2 / 2)
class 0

≥

(b) : The same tree after the reduction

Figure 3.4: Example of Tree reduction. This is an example tree, trained using
CART on a dummy dataset of 8 samples. The tree before reduction is extended
to be a complete tree of depth 2. The percentages in each leaf represent accuracy
on the set of 8 samples. We can see both types of reductions. Notice that the
reduction increased the leaf accuracy of the tree by 6.7 percentage points and
simplified the learned explanations.

31

3. Fair explanations using classification trees
class to perform the cross-validation, such a leaf is finished by an extending
tree of depth 5.

3.3 Experiments

Finally, we take a look at the experiments. The majority of FCT models
were trained with a depth limit equal to 4. The trees were then reduced and
extended by XGBoost to create the final Hybrid tree structure and to be
more comparable to the accuracy optimizing methods.

For MIP solving, we used the Gurobi optimizer [Gurobi Optimization, LLC,
2023], and for XGBoost training, we used the scikit-learn interface of the
model’s library [Chen and Guestrin, 2016]. For the hyperparameter search of
the XGBoost models in leaves, we used the scikit-optimize interface [Head
et al., 2021] of the Bayesian search with 3-fold cross-validation. The search
was performed for 50 iterations, and after the best hyperparameters were
found, they were used to train a model on all training data assigned to the
leaf.

We compare to CART algorithm, which is a widely used heuristic algorithm.
We used scikit-learn [Pedregosa et al., 2011] implementation. To optimize
its hyperparameters, we again used scikit-optimize interface of the Bayesian
search. We perform 100 iterations using 5-fold cross-validation. Specific
details of distributions are listed in Appendix C.2.

We also compare our method to OCT [Bertsimas and Dunn, 2017] for
which we used our implementation, provided with the implementation of
FCT.

FCT hyperparameters. We use one main configuration of hyperparameters
and then compare it to configurations with minor modifications to express the
influence of the hyperparameters. The main configuration of hyperparameters
of FCT is the following:

.The maximal depth of the tree is 4..The minimal number of samples in a leaf is 50.

32

..................................... 3.3. Experiments

.The Gurobi solver is parametrized to focus on heuristic improvements.
The Heuristics parameter is equal to 0.8, and the MIPFocus parameter is
1. This means the solver prefers looking for new feasible solutions more
than on proving the optimality.

3.3.1 Training modes

Even though the FCT formulation is complete, it still allows for different
paths leading to the optimum. Because the entire formulation takes a lot
of time to solve optimally for trees of depth greater than 2, we tested three
training modes. Other than direct optimization of the MIP formulation from
scratch (will be referred to as Direct), we propose two different configurations.

One uses a solution from CART algorithm as a starting point of the
optimization process. This is done using scikit-learn [Pedregosa et al., 2011]
implementation, without any hyperparameter tuning. The hyperparameters
are either default or the same as will be for the FCT formulation. Those are
a limit on depth (d) and a minimal amount of samples in a single leaf (Nmin).
This was the main method of optimization; we refer to it as Warmstarted.

The third variant works iteratively by increasing the depth of the tree and
warmstarting the models with the solutions of the shallower trees. We first
optimize the tree of depth 1, then use the solution as a starting point of the
tree with depth 2, and so on, until we reach the final depth. It will be referred
to as Gradual since the tree is gradually increasing its depth.

3.3.2 Datasets used

For experiments, we used a benchmark of tabular mid-size datasets created
by Grinsztajn et al. [2022]. The datasets contained in the benchmark are
in four sets, based on two criteria: Whether the target is classification or
regression and whether the dataset contains at least one categorical feature
or only numerical ones. Since the FCT model handles only classification,
we also take into account only two of the four sets that have classification
as a target. All visualizations will thus distinguish two types of datasets,
named numerical and categorical for short. Note that the categorical datasets
contain at least one categorical feature. Not all features must be categorical.
Indeed, there are datasets that, even without the categorical features, satisfied

33

3. Fair explanations using classification trees
the conditions set by the authors of the benchmark and are thus both in
categorical and numerical sets.

All runs were performed on 10 random splits of each dataset to training
and testing sets. The training set is 80% of the entire dataset, bounded to
at most 10 000 samples to satisfy “mid-sizedness” as was the intention and
practice of the benchmark authors. This way, we preserve comparability to
Grinsztajn et al. [2022]. The test set consists of the remaining 20% of the
dataset. The same splitting process is performed with 10 different random
seeds for the split.

3.4 Results

We start by showing results on a single dataset that has a lot of importance
to the XAI community. The COMPAS dataset contains data from a system
designed to help judges make better decisions. The system creators were
accused of racial bias [Julia Angwin et al., 2016]. The version used here (and
in the benchmark) is a simplified variant that contains basic information
about the defendant, and the target feature is a binary variable evaluating
true if the defendant re-offended in the next two years.

See Figure 3.5 for comparing our results to CART aggregated over multiple
runs. We notice a drop in model accuracy when comparing FCT (cca 0.65)
to CART (cca 0.67), which is understandable, given the fact that model
accuracy is not the objective of FCT formulation. On the other hand, we see
an increase of more than 10 percentage points in leaf accuracy, substantially
improving the validity of the explanations. The presented CART trees are
well optimized. Both types of trees were extended (and also reduced first), so
their results can be compared.

34

....................................... 3.4. Results

0.62 0.63 0.64 0.65 0.66 0.67 0.68 0.69
Accruacy of model

0.40

0.45

0.50

0.55

0.60

Le
af

 a
cc

ur
ac

y
(M

in
im

al
 a

cc
ur

ac
y

in
 a

 si
ng

le
 le

af
)

COMPAS dataset - will reoffend after 2 years?

Hybrid tree
Mean OOS Accuracy
Standard deviation

Low-depth tree
Mean OOS Accuracy
Standard deviation

Mean XGBoost
Proposed model
CART

Figure 3.5: Aggregated results for 10 different data splits of the compas-two-years
dataset. We observe the performance of 2 kinds of trees with extensions. We see
a lower performance in total accuracy of FCT (the Proposed model) compared to
CART method, but better leaf accuracy for FCT, for which it was the optimized
variable. Upon extending the models, the model performance increases for both
CART and FCT, with FCT having a slight edge.

35

3. Fair explanations using classification trees
3.4.1 Comparison to other methods

Figure 3.6 shows the aggregated performance of FCT (Proposed) model, the
warmstarted variant of OCT and optimized CART. We see that our model
outperforms not only CART but also OCT which served as the basis for our
model. On average, our model improves the minimal leaf accuracy by 11.16
percentage points compared to CART.

0.60 0.65 0.70 0.75 0.80
Accruacy of model

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

Le
af

 a
cc

ur
ac

y
(M

in
im

al
 a

cc
ur

ac
y

in
 a

 si
ng

le
 le

af
)

All categorical datasets [7]

0.65 0.70 0.75 0.80 0.85 0.90
Accruacy of model

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

Le
af

 a
cc

ur
ac

y
(M

in
im

al
 a

cc
ur

ac
y

in
 a

 si
ng

le
 le

af
)

All numerical datasets [16]

Hybrid tree
Mean OOS Accuracy
Standard deviation

Low-depth tree
Mean OOS Accuracy
Standard deviation

Mean XGBoost
Proposed model
OCT (warmstarted)
CART

Figure 3.6: Results on the testing sets. We see a significant increase in leaf
accuracy when using FCT formulation. A slight increase in hybrid tree accuracy
can also be noticed, although it has low statistical significance. For more detailed
results, refer to the comparison in Table 3.2.

36

....................................... 3.4. Results

Minimal Mean (± std) Maximal

Leaf Accuracy - CART

categorical −0.0247 0.1064± 0.0729 0.1905
numerical −0.0553 0.1139± 0.0630 0.2116

Model Accuracy - CART

categorical −0.0027 0.0053± 0.0084 0.0182
numerical −0.0253 0.0016± 0.0086 0.0111

Model Accuracy - XGBoost

categorical −0.0228 −0.0095± 0.0064 −0.0036
numerical −0.0276 −0.0108± 0.0076 0.0005

Table 3.2: Improvements of mean accuracy on datasets between FCT and CART
or XGBoost. Data is computed by subtracting the mean accuracy of CART or
XGBoost, respectively, from the mean accuracy of our model on each dataset. In
the first two rows, we compare the leaf accuracy of our model to CART. In the
middle two rows, we compare the model accuracy of the hybrid FCT trees with
hybrid CART trees. In the last two rows, we compare our hybrid tree model to
the mean XGBoost model trained on the same dataset. Detailed numeric results
are in Appendix C.3.

3.4.2 Dependance on dataset difficulty

With Figure 3.7 we explore the behavior for datasets of varying difficulty.
We define three categories of difficulty based on the mean accuracy of the
XGBoost model obtained by the benchmark authors. The thresholds of
difficulty categories are 0.7 and 0.8 for datasets containing some categorical
features and 0.75 and 0.85 for datasets with only numerical features.

This was done to see how well the proposed formulation behaves based on
some intrinsic complexities of a dataset. We notice a more stable increase in
leaf accuracy, positively correlated with the increase in hybrid tree accuracy of
FCT. Compared to CART, our model seems to perform better on categorical
data.

37

3. Fair explanations using classification trees

0.65 0.70 0.75 0.80 0.85
Accruacy of model

0.2

0.3

0.4

0.5

0.6

0.7

Le
af

 a
cc

ur
ac

y
(M

in
im

al
 a

cc
ur

ac
y

in
 a

 si
ng

le
 le

af
)

Categorical datasets [7]

0.65 0.70 0.75 0.80 0.85 0.90 0.95
Accruacy of model

0.3

0.4

0.5

0.6

0.7

Le
af

 a
cc

ur
ac

y
(M

in
im

al
 a

cc
ur

ac
y

in
 a

 si
ng

le
 le

af
)

Numerical datasets [16]

Hybrid trees
Mean Proposed
Mean CART
Standard deviation

Mean XGBoost

EASY datasets
[2 categ., 6 numer.]
MEDIUM datasets
[2 categ., 5 numer.]
HARD datasets
[3 categ., 5 numer.]

Figure 3.7: Results on testing data on all datasets. In square brackets are the
numbers of datasets belonging to each difficulty set. This plot shows that our
method, when extended in leaves, does not significantly decrease overall perfor-
mance compared to pure XGBoost while sometimes improving upon accuracy
obtainable by extended CART. It also shows that this capability is invariant to
the difficulty of the dataset.

38

....................................... 3.4. Results

3.4.3 Required resources

We performed all experiments on an internal cluster with sufficient amounts
of memory. Each run of the MIP solver has been limited to 8 hours on 8
cores of AMD Epyc 7543, totaling 64 core-hours per split of a dataset. The
extension part takes, on average, around 3 core-hours per split. This totals
around 15,500 core-hours for the entire classification part of the benchmark
of Grinsztajn et al. [2022] and one configuration of hyperparameters.

The entire optimization of CART of depth 4 with the extensions of the
leaves took around 500 core-hours for the entire classification part of the
benchmark.

Memory requirements

Overall, the memory requirements of the datasets for our 8-hour runs were
between 15 and 95 GB. On average, all datasets required at most 70 GB
of working memory. Figure 3.8 shows the memory requirements of our
formulation in more detail. The extension phase of the process is negligible
in this regard, as it requires only about 1.5 GB of working memory for all
the datasets. Training and extending the CART models also required less
than 2 GB of working memory.

The amount of memory required by the MIP solver is dependent on the
size of the data in the number of training samples, as well as the number of
features. Figure 3.8b shows this linear dependence of memory requirements
on the size of the training set. Based on the coloring of the nodes, we also
see the dependence on the number of features, especially in the case of the
Bioresponse dataset.

39

3. Fair explanations using classification trees

0 20 40 60 80
Memory used [GB]

0

2

4

6

8

10

12

14

Nu
m

be
r o

f t
re

es
 (7

0
to

ta
l)

categorical

0 20 40 60 80
Memory used [GB]

0

5

10

15

20

25

30

35

40

Nu
m

be
r o

f t
re

es
 (1

60
 to

ta
l)

numerical

(a) : Histogram of memory requirements of MIP solver for all dataset splits.

3000 4000 5000 6000 7000 8000 9000 10000
Size of the training set

20

30

40

50

60

70

M
ea

n
m

em
or

y
us

ed
 o

ve
r a

ll
sp

lit
s [

GB
]

Memory requirements

Bioresponse - 419 features 10

20

30

40

50

Nu
m

be
r o

f f
ea

tu
re

s

(b) : Mean memory requirements on datasets. Dots are colored according
to the number of features. Dataset Bioresponse is excluded from the color
mapping due to having a significantly higher number of features. Training
sets were clipped to a maximum of 10,000 points.

Figure 3.8: Memory requirements mostly do not exceed 70 GB. The memory
requirements increase slightly when more time is given to the solver and sig-
nificantly increase when bigger training sets are considered. We can also see
some correlation between the number of features and memory requirements when
looking at same-size datasets.

40

....................................... 3.4. Results

3.4.4 Helper methods

In this section, we wish to explore the methods introduced to improve the
performance of the model. We will be comparing the use of Soft accuracy
and Tree reduction.

Soft accuracy

The notion of leaf accuracy is very unstable. The value is easily affected by a
single inaccurate leaf. This observation led to the idea of soft accuracy, where
we are more benevolent with less-populated leaves. For details, see page 23.

Though it tackles well the issue of less populated leaves with high inaccuracy,
it does not provide improvements when considered during the optimization.
In Figure 3.10 one can see that if we consider the leaf accuracy on testing
data to be performed without the soft accuracy switch, the accuracy drops
well below the range of CART.

After MIP Soft Accuracy Reduced Reduced + Soft
0.0

0.2

0.4

0.6

0.8

1.0

Le
af

 a
cc

ur
ac

y
(M

in
im

al
 a

cc
ur

ac
y

in
 a

 si
ng

le
 le

af
)

categorical

After MIP Soft Accuracy Reduced Reduced + Soft
0.0

0.2

0.4

0.6

0.8

1.0

Le
af

 a
cc

ur
ac

y
(M

in
im

al
 a

cc
ur

ac
y

in
 a

 si
ng

le
 le

af
)

numerical

Figure 3.9: Comparison of the effect of proposed methods on leaf accuracy.
Each bar represents a mean value of leaf accuracy on testing data. The grey bar
shows the leaf accuracy right after the MIP solver ends. The red and blue are
after we compute the soft accuracy or after we reduce the tree, respectively. The
purple bar represents both methods combined. We see that soft accuracy helps
the leaf accuracy about the same amount as the reduction of the tree. Indeed,
both reduce the effect of inaccurate, less-populated leaves. Their combination
does not yield significant further improvement.

41

3. Fair explanations using classification trees

0.60 0.65 0.70 0.75 0.80
Accruacy of model

0.2

0.3

0.4

0.5

0.6

0.7

Le
af

 a
cc

ur
ac

y
(M

in
im

al
 a

cc
ur

ac
y

in
 a

 si
ng

le
 le

af
)

categorical

0.60 0.65 0.70 0.75 0.80 0.85 0.90
Accruacy of model

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Le
af

 a
cc

ur
ac

y
(M

in
im

al
 a

cc
ur

ac
y

in
 a

 si
ng

le
 le

af
)

numerical

Hybrid tree
Mean OOS Accuracy
Standard deviation

Low-depth tree
Mean OOS Accuracy
Standard deviation

Mean XGBoost
Proposed (Nmin = 50)
Proposed (Nmin = 1)
Soft acc (Nmin = 1, Hthresh = 20)
CART (depth = 4)

Figure 3.10: Performance using soft accuracy with threshold Hthresh = 20. We
compare 3 configurations of FCT here. The blue is our selected configuration.
Green has relaxed constraints on the minimum of samples in a leaf. Yellow is
the same but trained using soft constraints. It performs the worse by far.

Tree reduction

Tree reduction is a good way to obtain more robust leaf accuracy. By reducing
the tree without hurting the accuracy, we achieve the same improvement as
by creating an ad-hoc concept of soft accuracy. See Figure 3.9

In Figure 3.11, we compare the complexity of the created trees by comparing
the distributions of the number of leaves (or potential explanations) provided
by the method. The CART model averages around 8 leaves after reduction.
Our proposed model’s distribution is close to that of CART models. When
solving the MIP formulation directly, the distribution is severely shifted
toward very small trees. Our proposed method uses a default CART solution
to warmstart the search.

42

....................................... 3.4. Results

0 2 4 6 8 10 12 14 16
Number of leaves after reduction

0.0

0.1

0.2

0.3

0.4

0.5

Pr
op

or
tio

n
of

 tr
ee

s
categorical

0 2 4 6 8 10 12 14 16
Number of leaves after reduction

0.0

0.1

0.2

0.3

0.4

0.5

Pr
op

or
tio

n
of

 tr
ee

s

numerical

(a) : Histogram of the number of leaves of the reduced trees optimized directly
using the proposed formulation. The trees are heavily pruned.

0 2 4 6 8 10 12 14 16
Number of leaves after reduction

0.0

0.1

0.2

0.3

0.4

0.5

Pr
op

or
tio

n
of

 tr
ee

s

categorical

0 2 4 6 8 10 12 14 16
Number of leaves after reduction

0.0

0.1

0.2

0.3

0.4

0.5

Pr
op

or
tio

n
of

 tr
ee

s

numerical

(b) : Histogram of the number of leaves of the reduced FCT trees created
with the proposed formulation, warmstarted using a simple CART solution.
The trees are smaller than well-optimized CART but retain some complexity.
This was the chosen method.

0 2 4 6 8 10 12 14 16
Number of leaves after reduction

0.0

0.1

0.2

0.3

0.4

0.5

Pr
op

or
tio

n
of

 tr
ee

s

categorical

0 2 4 6 8 10 12 14 16
Number of leaves after reduction

0.0

0.1

0.2

0.3

0.4

0.5

Pr
op

or
tio

n
of

 tr
ee

s

numerical

(c) : Histogram of the number of leaves of the reduced trees created by CART
with optimized hyperparameters.

Figure 3.11: Comparison of the numbers of leaves in trees after the reduction
procedure.

43

3. Fair explanations using classification trees
3.4.5 Other optimization strategies

To show that the warmstarting optimization method is truly the best, we
show the comparison in Figure 3.12. All methods have equivalent conditions
and hyperparameters, including the time to optimize. To refresh the reader,
we provide a quick description of

. Direct refers to the straightforward use of the MIP formulation.

.Warmstarted uses a simple CART solution (created using default hyper-
parameters) as a starting point of the solving process.

. Gradual refers to a special process where we use a shallower tree to train
a tree with a depth higher by 1 until we reach the desired depth.

. Halving is the primitive method of using a slightly extended OCT for-
mulation and performing the halving algorithm. See Algorithm 1.

All of the three approaches were run with the same resources. This
meant that even the Gradual approach took 8 hours in total. The time was
distributed so that the available time for the optimization process doubled
with each increase in depth. This means 32 minutes for the first run, 64
minutes for the tree of depth 2, 128 for depth 3, and 4 hours 16 minutes for
the final tree with depth 4.

For the Halving approach, we use the estimate of the number of runs needed
(see Equation (3.18)) and divide the amount of time to nruns equal parts.

Two interesting things manifest. Firstly, the halving algorithm shows
respectable performance. One would likely not expect such performance from
a first-draft variant of the solution.

Secondly, the gradual approach shows promise. It has higher hybrid-tree
accuracy by another 0.2 percentage points on average and has lower leaf
accuracy by only about 1.2 percentage points compared to the Warmstarted
approach (see Table 3.3 for the numerical comparison).

44

....................................... 3.4. Results

0.50 0.55 0.60 0.65 0.70 0.75 0.80
Accruacy of model

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

Le
af

 a
cc

ur
ac

y
(M

in
im

al
 a

cc
ur

ac
y

in
 a

 si
ng

le
 le

af
)

categorical

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90
Accruacy of model

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

Le
af

 a
cc

ur
ac

y
(M

in
im

al
 a

cc
ur

ac
y

in
 a

 si
ng

le
 le

af
)

numerical

Hybrid tree
Mean OOS Accuracy
Standard deviation

Low-depth tree
Mean OOS Accuracy
Standard deviation

Mean XGBoost
Warmstarted
Gradual
Halving
Direct
CART

Figure 3.12: Comparison of the various strategies to the optimization given the
same resources and conditions. Warmstarted refers to starting the optimization
process with a CART solution. The gradual approach is the approach of increasing
the depth of a tree and starting each new depth with the solution of the previous
shallower tree. Direct means a simple, straightforward optimization of the
formulation, as it is stated, without any hints. Halving is the implementation of
OCT and a hard constraint on the leaf accuracy, that changes as the Algorithm
1 progresses. All four approaches were run with the same resources. For a closer
investigation of the Gradual approach, see Table 3.3.

45

3. Fair explanations using classification trees
Data type Min Mean (± std) Max

Leaf Accuracy categorical −0.1094 0.0122± 0.0753 0.1130
numerical −0.0867 0.0117± 0.0624 0.1154

Model Accuracy categorical −0.0219 −0.0021± 0.0094 0.0083
numerical −0.0103 −0.0023± 0.0056 0.0076

Table 3.3: Comparison of Gradual and Warmstarted approach. Positive numbers
show an advantage in the mean accuracy of the Warmstarted approach. Gradual
refers to the approach when the depth of the tree is gradually increased during
the optimization process.

3.4.6 Shorter time

When considering a shorter time for optimization, we can lower the memory
requirements from up to 95 GB to levels attainable by current personal
computers. When optimizing our MIP model for one hour, the required
memory is below 50 GB for all datasets except Bioresponse, which has one
order of magnitude more features than the rest of the datasets included in
the benchmark.

The mean memory requirement is below 30 GB of working memory (com-
pared to 50 GB for the 8-hour run). See Figure 3.13 for details.

Figure 3.14 shows that even with this limited time, compared to CART,
we can achieve significant improvement in leaf accuracy and similar accuracy
of hybrid trees.

46

....................................... 3.4. Results

0 20 40 60 80
Memory used [GB]

0

5

10

15

20

25

Nu
m

be
r o

f t
re

es
 (7

0
to

ta
l)

categorical

0 20 40 60 80
Memory used [GB]

0

10

20

30

40

50

Nu
m

be
r o

f t
re

es
 (1

60
 to

ta
l)

numerical

(a) : Histogram of memory requirements of MIP solver for all dataset splits.

3000 4000 5000 6000 7000 8000 9000 10000
Size of the training set

20

30

40

50

60

M
ea

n
m

em
or

y
us

ed
 o

ve
r a

ll
sp

lit
s [

GB
]

Memory requirements

Bioresponse - 419 features 10

20

30

40

50

Nu
m

be
r o

f f
ea

tu
re

s

(b) : Mean memory requirements on datasets. Dots are colored according to the
number of features. Dataset Bioresponse is excluded from the color mapping due
to having a significantly higher number of features. Training sets were clipped to a
maximum of 10,000 points.

Figure 3.13: Comparison to a version of the FCT (Proposed) model that the
Gurobi solver optimized for only one hour. Compared to the main configuration,
which ran for 8 hours, we notice a significant decrease in memory requirements
for most datasets, up to tens of gigabytes. An outlier dataset Bioresponse with
cca 10 times more features sees a smaller decrease of about 2 GB.

47

3. Fair explanations using classification trees

0.60 0.65 0.70 0.75 0.80
Accruacy of model

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

Le
af

 a
cc

ur
ac

y
(M

in
im

al
 a

cc
ur

ac
y

in
 a

 si
ng

le
 le

af
)

categorical

0.65 0.70 0.75 0.80 0.85 0.90
Accruacy of model

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

Le
af

 a
cc

ur
ac

y
(M

in
im

al
 a

cc
ur

ac
y

in
 a

 si
ng

le
 le

af
)

numerical

Hybrid tree
Mean OOS Accuracy
Standard deviation

Low-depth tree
Mean OOS Accuracy
Standard deviation

Mean XGBoost
Proposed - 8 hours
Proposed - 1 hour
CART

Figure 3.14: Comparison of the performance of the FCT model after 1 and 8
hours of optimization.

48

....................................... 3.4. Results

3.4.7 MIP solve process

Although the MIP solver works towards global optimality, the road there
is lengthy. Figure 3.15b shows the progress of the MIP gaps during the
8-hour optimization averaged over all datasets. For a detailed look, see Figure
3.16. We see that the solution is still improving, albeit rather slowly, after
8 hours. Given that none of the runs improved the objective bound from 1
noticeably, the narrowing of the MIP gap is achieved only through finding a
better feasible solution. The objective bound always starts at 1 because of
the constraints on the variable Q.

This lack of improvement of the objective bound might have been affected
by our Gurobi parameter settings which focused on finding feasible solutions
and heuristic search. However, in tests with default parameters, the best
bound did not improve either.

Default parameters of Gurobi solver

To measure the performance improvement of our choice of parameters of the
solver, we ran a test with the default value of the MIPFocus parameter and a
test with the default value of the Heuristics parameter.

The results (see Figure 3.15a and Tables 3.4, 3.5) show no significant
improvements regarding the MIPFocus parameter. However, with the default
value of the Heuristics parameter, we observe an improvement in performance
on numerical datasets and a decrease in performance on categorical datasets.
The absolute differences are about the same, so we opted for the variant with
similar performances on both categorical and numerical datasets, that being
the proposed variant focusing on heuristics. The proposed configuration also
shows a more stable increase in accuracy w.r.t. the performance of CART
models. The solver performance varies per dataset, as visualized by Figure
3.16.

These differences in performance suggest that parameter space regarding
the MIP solver should be further explored.

49

3. Fair explanations using classification trees

0.60 0.65 0.70 0.75 0.80
Accruacy of model

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

Le
af

 a
cc

ur
ac

y
(M

in
im

al
 a

cc
ur

ac
y

in
 a

 si
ng

le
 le

af
)

categorical

0.65 0.70 0.75 0.80 0.85 0.90
Accruacy of model

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

Le
af

 a
cc

ur
ac

y
(M

in
im

al
 a

cc
ur

ac
y

in
 a

 si
ng

le
 le

af
)

numerical

Hybrid tree
Mean OOS Accuracy
Standard deviation

Low-depth tree
Mean OOS Accuracy
Standard deviation

Mean XGBoost
Proposed
Default Heuristcs
Default MIPFocus
CART

(a) : Comparison of the FCT model to models with default parameter
configurations show varying results. MIPFocus seems to influence the search
only very slightly. Heuristics, on the other hand, show significant improvement
on numerical datasets and a decrease in performance on categorical datasets,
with about the same value.

0 2 4 6 8
Hours

0

20

40

60

80

100

M
ea

n
M

IP
 G

ap
 [%

]

categorical
Default MIPFocus
Proposed
Default Heuristics

0 2 4 6 8
Hours

0

20

40

60

80

100

M
ea

n
M

IP
 G

ap
 [%

]

numerical
Default MIPFocus
Proposed
Default Heuristics

(b) : Mean MIP optimality gap development over the solving time,
averaged over all datasets. For a non-aggregated version, see Figure
3.16.

Figure 3.15: Comparison of models with the proposed base configuration of
Gurobi parameters and default parameters.

50

....................................... 3.4. Results

0 2 4 6 8
Hours

0

20

40

60

80

100

M
IP

 G
ap

 [%
]

Default MIPFocus - categorical

0 2 4 6 8
Hours

0

20

40

60

80

100

M
IP

 G
ap

 [%
]

Default MIPFocus - numerical

0 2 4 6 8
Hours

0

20

40

60

80

100

M
IP

 G
ap

 [%
]

Proposed - categorical

0 2 4 6 8
Hours

0

20

40

60

80

100

M
IP

 G
ap

 [%
]

Proposed - numerical

categorical
albert
compas-two-years
covertype
default-of-credit-card-clients
electricity
eye_movements
road-safety

numerical
bank-marketing
Bioresponse
california
covertype
credit
default-of-credit-card-clients
Diabetes130US
electricity
eye_movements
Higgs
heloc
house_16H
jannis
MagicTelescope
MiniBooNE
pol

0 2 4 6 8
Hours

0

20

40

60

80

100

M
IP

 G
ap

 [%
]

Default Heuristics - categorical

0 2 4 6 8
Hours

0

20

40

60

80

100

M
IP

 G
ap

 [%
]

Default Heuristics - numerical

Figure 3.16: Mean MIP optimality gap development over the solving time. The
figure shows the progress of the value of the MIP optimality gap averaged over all
splits of each dataset. Each line corresponds to one dataset. For an aggregated
version, see Figure 3.15b

51

3. Fair explanations using classification trees

Default Heuristics Data type Min Mean (± std) Max

Leaf Accuracy categorical −0.0117 0.0158± 0.0234 0.0531
numerical −0.1178 −0.0143± 0.0402 0.0435

Model Accuracy categorical −0.0011 0.0017± 0.0035 0.0094
numerical −0.0047 0.0005± 0.0025 0.0062

Table 3.4: Detailed view of the differences in the accuracy between default
Heuristics value and the proposed configuration. A positive number means the
accuracy advantage of the proposed parameter configuration. This shows a
numerical representation of what can be seen in Figure 3.15a. We see absolute
mean differences of comparable values. The negative difference on numerical
datasets also has a higher standard deviation, suggesting a stronger influence by
an outlier dataset.

Default MIPFocus Data type Min Mean (± std) Max

Leaf Accuracy categorical −0.0304 0.0036± 0.0213 0.0299
numerical −0.0528 0.0034± 0.0342 0.0788

Model Accuracy categorical −0.0028 0.0016± 0.0043 0.0088
numerical −0.0026 0.0001± 0.0019 0.0032

Table 3.5: Detailed view of the differences in the accuracy between the default
MIPFocus value and the proposed configuration. A positive number means
the accuracy advantage of the proposed parameter configuration. This shows
a numerical representation of what can be seen in Figure 3.15a. Both variants
seem to perform comparably, with a potential slight edge in favor of the proposed
configuration.

52

....................................... 3.4. Results

3.4.8 Further Ablation Analyses

We provide some comparing experiments performed by changing a single
hyperparameter, or a few closely related hyperparameters, in the case of
CART.

Unlimited depth CART

An argument could be made against the choice to compare our method to
CART trees with depth maximally equal to 4. Figure 3.17 and Table 3.6 in
more detail show a comparison of CART models with a maximal depth of
4 and a maximal depth of 20. The actual depth limit for each model was
optimized along with other hyperparameters using the Bayes hyperparameter
optimization procedure.

The aggregated results show worse performance regarding both leaf accuracy
and hybrid-tree accuracy. Not only do the deeper trees perform worse, but the
length of provided explanations is also well above the 5-9 threshold suggested
as the limit of human understanding.

Data type Min Mean (± std) Max

Leaf Accuracy categorical −0.0769 0.2053± 0.2389 0.5404
numerical −0.1183 0.2441± 0.2115 0.5680

Model Accuracy categorical −0.0025 0.0173± 0.0185 0.0420
numerical −0.0006 0.0156± 0.0119 0.0370

Table 3.6: More detailed view of the differences in the accuracy between CART
trees with max depth 4 and CART trees with max depth 20. A positive number
means the accuracy advantage of the more constrained model. This shows a
numerical representation of what can be seen in Figure 3.17

53

3. Fair explanations using classification trees

0.60 0.65 0.70 0.75 0.80
Accruacy of model

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Le
af

 a
cc

ur
ac

y
(M

in
im

al
 a

cc
ur

ac
y

in
 a

 si
ng

le
 le

af
)

categorical

0.65 0.70 0.75 0.80 0.85 0.90
Accruacy of model

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Le
af

 a
cc

ur
ac

y
(M

in
im

al
 a

cc
ur

ac
y

in
 a

 si
ng

le
 le

af
)

numerical

Hybrid tree
Mean OOS Accuracy
Standard deviation

Low-depth tree
Mean OOS Accuracy
Standard deviation

Mean XGBoost
Proposed
CART depth 4
CART depth 20

Figure 3.17: Comparison of CART tree results with limited depth and without
such a strict limit on the depth. Deeper trees provide worse explanations (due
to the length of explanation) and perform worse in general accuracy. For a more
detailed description of the differences introduced by the depth, consult Table
3.6

54

....................................... 3.4. Results

No minimum number of samples in leaves

This comparison, see Figure 3.18, shows the importance of setting a minimal
amount of samples in leaves. Without enough points to support the obtained
leaf accuracy, it is more likely to be overfitted. On the other hand, when
choosing the Nmin parameter too high, we disable the solver to perform some
possibly beneficial splits, if they are supported by only a small amount of
training data.

This is certainly an important hyperparameter and further testing could
provide more insight into the proposed model’s performance.

0.60 0.65 0.70 0.75 0.80
Accruacy of model

0.3

0.4

0.5

0.6

0.7

Le
af

 a
cc

ur
ac

y
(M

in
im

al
 a

cc
ur

ac
y

in
 a

 si
ng

le
 le

af
)

categorical

0.65 0.70 0.75 0.80 0.85 0.90
Accruacy of model

0.3

0.4

0.5

0.6

0.7

Le
af

 a
cc

ur
ac

y
(M

in
im

al
 a

cc
ur

ac
y

in
 a

 si
ng

le
 le

af
)

numerical

Hybrid tree
Mean OOS Accuracy
Standard deviation

Low-depth tree
Mean OOS Accuracy
Standard deviation

Mean XGBoost
Proposed (Nmin = 50)
Proposed (Nmin = 1)
CART

Figure 3.18: Comparison of performance of the proposed model with minimum
samples in leaves equal 50 and 1. Without the constraint, leaf accuracy is
supported by a low amount of samples, leading to higher overfitting to training
data and worse out-of-sample performance. Notice the high variance of the
model without a lower bound on the number of samples. CART optimized its
minimal amount of samples in leaves in hyperparameter search, according to
Table C.3.

55

3. Fair explanations using classification trees
Non-warmstarted OCT

We compare our method to warmstarted OCT because both start from the
same CART initial solution. This makes them more comparable. However,
we also tested the OCT variant, directly optimized from the MIP formulation.
See the results in Figure 3.19. All OCT models were run with the same
hyperparameters as the proposed model. Heuristics-oriented solver, depth
equal to 4, and a minimal amount of samples in leaves equal to 50.

The average OCT performs worse than all our approaches (see Figure 3.12),
but the improvement from the warmstarted variant is intriguing. Especially
considering that it is not caused by the direct OCT method’s inability to
create complex trees without warmstarting. This is supported by Figure 3.20
showing a distribution of leaves similar to the distribution of CART trees
(see Figure 3.11).

This suggests that the OCT trees have comparable complexity to CART
and provide more valid explanations than CART, even without our extension
to the formulation. This is an interesting result, considering the fact that
neither CART nor OCT methods optimize for leaf accuracy. Our model,
however, almost doubles the improvement of direct OCT. It improves by a
similar number of percentage points as OCT improves on CART.

56

....................................... 3.4. Results

0.60 0.65 0.70 0.75 0.80
Accruacy of model

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

Le
af

 a
cc

ur
ac

y
(M

in
im

al
 a

cc
ur

ac
y

in
 a

 si
ng

le
 le

af
)

categorical

0.65 0.70 0.75 0.80 0.85 0.90
Accruacy of model

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

Le
af

 a
cc

ur
ac

y
(M

in
im

al
 a

cc
ur

ac
y

in
 a

 si
ng

le
 le

af
)

numerical

Hybrid tree
Mean OOS Accuracy
Standard deviation

Low-depth tree
Mean OOS Accuracy
Standard deviation

Mean XGBoost
Proposed
OCT
OCT warmstarted
CART

Figure 3.19: Comparison of OCT trees that are warmstarted the same way as our
FCT model and OCT without the warmstart, optimized directly. Interestingly,
direct OCT performs significantly better.

57

3. Fair explanations using classification trees

0 2 4 6 8 10 12 14 16
Number of leaves after reduction

0.0

0.1

0.2

0.3

0.4

0.5

Pr
op

or
tio

n
of

 tr
ee

s

categorical

0 2 4 6 8 10 12 14 16
Number of leaves after reduction

0.0

0.1

0.2

0.3

0.4

0.5

Pr
op

or
tio

n
of

 tr
ee

s

numerical

(a) : Histogram of the number of leaves in the reduced trees of the direct OCT method

0 2 4 6 8 10 12 14 16
Number of leaves after reduction

0.0

0.1

0.2

0.3

0.4

0.5

Pr
op

or
tio

n
of

 tr
ee

s

categorical

0 2 4 6 8 10 12 14 16
Number of leaves after reduction

0.0

0.1

0.2

0.3

0.4

0.5

Pr
op

or
tio

n
of

 tr
ee

s

numerical

(b) : Histogram of the number of leaves in the reduced trees of the warmstarted OCT
method.

Figure 3.20: Comparison of reduced tree complexity of the OCT with and
without warmstart. OCT without warmstart creates trees of similar distribution
as the CART method (see Figure 3.11) but achieves better leaf accuracy than
CART (see Figure 3.19) despite neither of them optimizes that objective.

58

....................................... 3.4. Results

Influence of depth

Lastly, we provide a comparison of our trees of depths 3, 4, and 5. Figure
3.22 shows the best results for the shallowest tree. Because of the exponential
increase in memory requirements, deeper trees are not able to perform the
same amount of optimization as the shallower ones. This is clear from the
formulation, but we also provide experiment data in Figure 3.23.

With a model of twice the complexity, the solver struggles to achieve
comparable results to our proposed model with lower depth. In the optimum,
deeper trees should only improve the leaf accuracy or stay at the same level.
We work with a time limit, and the solver handles smaller formulations better.
This is certainly a topic of further exploration, for example, by incorporating
scalability improvements to the model proposed in the literature [e.g. Verwer
and Zhang, 2019; Aghaei et al., 2020, 2022].

We see that the model with depth 3 is performing the best by far. Since
we selected the initial configuration to use a depth of 4, all other compared
configurations were set to use it for comparability. Although the trees of
depth 3 have the best leaf accuracy, we do not present them as the main
method. The reason is that the trees are significantly smaller (see Figure
3.21) and that we would further restrict the length of explanations to at most
3.

This is certainly a hyperparameter worth thinking about, to figure out
what kind of trees one wants.

0 2 4 6 8 10 12 14 16
Number of leaves after reduction

0.0

0.1

0.2

0.3

0.4

0.5

Pr
op

or
tio

n
of

 tr
ee

s

categorical

0 2 4 6 8 10 12 14 16
Number of leaves after reduction

0.0

0.1

0.2

0.3

0.4

0.5

Pr
op

or
tio

n
of

 tr
ee

s

numerical

Figure 3.21: Number of leaves in the reduced FCT models of depth 3. Distribu-
tion is understandably skewed compared to the distribution of FCT of depth 4
in Figure 3.11b.

59

3. Fair explanations using classification trees

0.60 0.65 0.70 0.75 0.80
Accruacy of model

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

Le
af

 a
cc

ur
ac

y
(M

in
im

al
 a

cc
ur

ac
y

in
 a

 si
ng

le
 le

af
)

categorical

0.60 0.65 0.70 0.75 0.80 0.85 0.90
Accruacy of model

0.4

0.5

0.6

0.7

Le
af

 a
cc

ur
ac

y
(M

in
im

al
 a

cc
ur

ac
y

in
 a

 si
ng

le
 le

af
)

numerical

Hybrid tree
Mean OOS Accuracy
Standard deviation

Low-depth tree
Mean OOS Accuracy
Standard deviation

Mean XGBoost
Proposed (depth = 3)
Proposed (depth = 4)
Proposed (depth = 5)
CART (depth = 4)

Figure 3.22: Comparison of performance of the proposed model with depth 3, 4,
and 5. Depth 5 seems to be beyond the limit of what is tractable to efficiently
optimize in 8 hours, and depth 3 limits the possibilities of explanations too much.
However, it has by far the best leaf accuracy. Comparisons to CART of depths 5
and 3 would bring more information and a better understanding of up to what
degree this is a feature of trees as a model and up to what degree is this a feature
of our optimization formulation.

60

....................................... 3.4. Results

0 20 40 60 80 100 120 140
Memory used [GB]

0

2

4

6

8

Nu
m

be
r o

f t
re

es
 (7

0
to

ta
l)

categorical

0 20 40 60 80 100 120 140
Memory used [GB]

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Nu
m

be
r o

f t
re

es
 (1

60
 to

ta
l)

numerical

(a) : Histogram of memory requirements of MIP solver for all dataset splits for trees
of depth 5, solved for 8 hours.

0 20 40 60 80 100 120 140
Memory used [GB]

0

2

4

6

8

10

12

14

Nu
m

be
r o

f t
re

es
 (7

0
to

ta
l)

categorical

0 20 40 60 80 100 120 140
Memory used [GB]

0

5

10

15

20

25

30

35

40

Nu
m

be
r o

f t
re

es
 (1

60
 to

ta
l)

numerical

(b) : Histogram of memory requirements of MIP solver for all dataset splits for trees
of depth 4, solved for 8 hours.

0 20 40 60 80 100 120 140
Memory used [GB]

0

5

10

15

20

25

Nu
m

be
r o

f t
re

es
 (7

0
to

ta
l)

categorical

0 20 40 60 80 100 120 140
Memory used [GB]

0

10

20

30

40

50

60

Nu
m

be
r o

f t
re

es
 (1

60
 to

ta
l)

numerical

(c) : Histogram of memory requirements of MIP solver for all dataset splits for trees of
depth 3, solved for 8 hours. All solving processes fit under 45 GB.

Figure 3.23: Comparison of the memory requirements of the FCT model with
depths 3 through 5. The mean memory requirement almost doubles from cca
23.9 GB for depth 3 through 51.1 GB for depth 4 to 77.3 GB for depth 5.

61

3. Fair explanations using classification trees
Interestingly, the proposition that leaf accuracy is higher for shallower trees

seems valid even on commonly used CART trees. Figure 3.25 shows the
comparison of CART and FCT models with depth 3. We see a significant
increase in the leaf accuracy compared to depth 4. Nonetheless, CART models
of depth 3 still do not outperform FCT models of depth 4, which are the base
configurations.

This suggests that the deeper the tree we allow, the worse our leaf accuracy
gets. This seems to be an issue of overfitting, and indeed, shallower trees are
less likely to overfit due to limits on expressiveness. It might also be true
that there is an ideal depth of a tree regarding the leaf accuracy.

Further, in Figure 3.24, we illustrate the relation between the depth of
the tree and the amount of working memory used (in GB) to optimize the
model for 8 hours. We have seen the influence of time on the amount of
memory needed, so it is clear that the formulation size is not the only relevant
parameter. Interestingly, Figure 3.24 does not show a superlinear dependence.
However, that might be because of noise due to the presence of mere 3 data
points in the plot.

3 4 5
Depth of the tree

30

40

50

60

70

80

M
ea

n
m

em
or

y
us

ed
 [G

B]

Dependence of the depth of the tree on the memory used in optimization

Figure 3.24: Dependence of mean memory requirements for MIP formulations
on the depth of the tree.

62

....................................... 3.4. Results

0.60 0.65 0.70 0.75 0.80
Accruacy of model

0.50

0.55

0.60

0.65

0.70

Le
af

 a
cc

ur
ac

y
(M

in
im

al
 a

cc
ur

ac
y

in
 a

 si
ng

le
 le

af
)

categorical

0.65 0.70 0.75 0.80 0.85 0.90
Accruacy of model

0.50

0.55

0.60

0.65

0.70

0.75

Le
af

 a
cc

ur
ac

y
(M

in
im

al
 a

cc
ur

ac
y

in
 a

 si
ng

le
 le

af
)

numerical

Hybrid tree
Mean OOS Accuracy
Standard deviation

Low-depth tree
Mean OOS Accuracy
Standard deviation

Mean XGBoost
Proposed (depth = 3)
Proposed (depth = 4)
CART (depth = 3)

Figure 3.25: Detailed comparison of CART and FCT for depth 3. With the
FCT of depth 4 as a reference. Shallower trees seem to have better leaf accuracy
in general, possibly due to the lack of overfitting to the training data.

63

3. Fair explanations using classification trees
3.4.9 More input data

The 10,000 limit on training samples could be seen as arbitrary. The reason
for it, other than this was the practice of Grinsztajn et al. [2022], is that we
want our model to balance the size of the formulation and the capability of
the formulated model. In other words, if we take a small amount of data,
we are less likely to grasp the intricacies of the target variable distribution
within the dataset. And if we take too many samples, we create a formulation
that will not achieve good performance in a reasonable time.

Nonetheless, in a direct comparison of a model learned on a training dataset
limited to 10,000 samples and 50,000 samples, we see that more data does
not necessarily lead to a better model, see Figure 3.26. The 50,000 model is
worse because of the too-demanding complexity of the formulation.

It improves the model accuracy, which is not surprising since each leaf
obtains more samples. The comparison to XGBoost in this regard is unfortu-
nately not fully reliable since the mean value was computed from performances
of models trained on at most 10,000 samples.

64

....................................... 3.4. Results

0.65 0.70 0.75 0.80 0.85 0.90
Accruacy of model

0.3

0.4

0.5

0.6

0.7

Le
af

 a
cc

ur
ac

y
(M

in
im

al
 a

cc
ur

ac
y

in
 a

 si
ng

le
 le

af
)

Categorical datasets [5]

0.65 0.70 0.75 0.80 0.85 0.90
Accruacy of model

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

Le
af

 a
cc

ur
ac

y
(M

in
im

al
 a

cc
ur

ac
y

in
 a

 si
ng

le
 le

af
)

Numerical datasets [11]

Hybrid tree
Mean OOS Accuracy
Standard deviation

Low-depth tree
Mean OOS Accuracy
Standard deviation

Mean XGBoost
Proposed (10k samples)
Proposed (50k samples)
CART

Figure 3.26: Comparison of a FCT trained on at most 10,000 and 50,000
data samples. We compare only on datasets where the constraint meant a
change. Thus we omit datasets with enough samples to be covered by the main
configuration of taking 80% of data as training samples and cropping it to at most
10,000. Essentially, this meant we excluded all datasets with less than 12,500
samples. The number of datasets is in square brackets. CART and XGBoost
both use also only 10,000 samples, so the better mean score on the categorical
dataset is to be taken with a grain of salt.

65

66

Chapter 4

Counterfactual optimization

Lastly, we introduce work regarding local explanations. We aim to create
an optimizable function based on counterfactuals. Such a function would
assess the ability of a model to generate sound, informative counterfactuals.
The model could then be optimized with such a measure in mind. This
could improve the local explainability of a model for which it is otherwise
difficult to provide global explanations. Or if such global explanations are not
representative enough or fair and valid, as discussed in the previous chapter.

As presented in Chapter 2, counterfactuals can be found optimally using
Mixed-integer programming (MIP). We can optimize the proximity of our
counterfactual x′ to the original input x while limiting the search space only
to samples that lead to a different result. This goal can be expressed in the
following way:

arg min
x′

dist(x, x′) (4.1)

s.t. N (x) ̸= N (x′) (4.2)
x′ remains a valid representation of a sample (4.3)

where dist(·, ·) is some distance function and N (x) represents a result of
model N on sample x.

When using a MIP solver, we can generate all counterfactuals relatively
close to the optimal value v. We can set an ϵ and use the solver to obtain
all counterfactuals with their objective value less than (1 + ϵ) ∗ v where v is
the objective value of the best counterfactual. The objective function (4.1) is
some distance to the factual x.

67

4. Counterfactual optimization
We search for all locally optimal samples within this range. We call the set

of such samples Cx, where Cx ⊆ C. The set C is a union of all counterfactuals
for every sample from D

C =
⋃

x∈D
Cx

where D is a set of input samples, in our case, usually a kind of validation
set.

The actual MIP formulation consists of two main parts. The encoding of
the input and encoding of the NN computation.

4.1 Encoding of the input

For the input encoding, we use one introduced by Russell [2019]. He proposes
a clever way to incorporate features of mixed types. Consider a feature
representing the number of months a loan payment was late. This has a con-
tinuous range, but optionally, one might consider extra categorical values. For
example, to represent missing records or that no previous loan was recorded.
These extra values can be useful for the model. One usually implements them
using a one-hot encoding and a default value for the continuous range, usually
0.

The MIP encoding by Russell [2019] binds a one-hot vector and a continuous
variable together using a binary variable as a switch. This construct is called a
mixed polytope. We extended the original formulation to account for entirely
categorical features correctly. Such features are added as a standard one-hot
encoding to a binary vector giving up the continuous feature.

Following the work of Russell [2019], we minimize a weighted 1-norm
of the difference of original and counterfactual vectors ∥x − x′∥1,w. Since
the input sample x contains categorical, continuous, and possibly mixed
features, we create our input vector x̄ by performing a one-hot encoding for
all categorical values. In the input vector, we have thus binary and continuous
fields. We denote the sets of indices of binary and continuous fields by B and
C, respectively.

68

.................................4.1. Encoding of the input

The general formulation is the following:

arg min (g + h)TwC +
∑
j∈B

sjwj · (d′
j − x̄j) (4.4)

s.t. N (x) ̸= N (x′) (4.5)
0 ≤ gi, x̄i − ci ≤ gi ∀i ∈ C (4.6)
0 ≤ hi, ci − x̄i ≤ hi ∀i ∈ C (4.7)
conditions for mixed polytope and one hot encoding hold
di ∈ {0, 1} ∀i ∈ C (4.8)

where g is a vector of the negative deviation from the original values, h is the
opposite, and c is the vector of the counterfactual values of the continuous
fields.

In the objective function (4.4), d′ is the vector of binary values of the
counterfactual. The vector wC together with all parameters wj are weights.
These weights can be used to tune the generation of counterfactuals (e.g.,
to reflect actionability). We set them in a predefined way as inverse median
absolute deviations in alignment with Russell [2019]. By setting sj ∈ {−1, 1}
appropriately, the correct influence of each binary variable on the objective
can be set.

sj =
{
−1 if x̄j = 1
1 otherwise

because (d′
j − xj) < 0 is true only if binary variable xj is 1, and changing

that should increase the objective value since the value has been changed in
the counterfactual.

4.1.1 Mixed polytope

Mixed-polytope conditions are conditions that, for each mixed-type feature,
bind its continuous and categorical values together. To stabilize the impact on
the optimization, they ensure that the continuous value is set to an “anchor”
value (typically 0) if one of the categorical values is chosen. This “anchor”
value for each feature i of the input sample is denoted Fi. We denote ci, the
continuous value of feature i, that must lie in the range [Li, Ui].

We also introduce binary indicators di,j for j ∈ {1, 2, . . . , ki} values, where
ki is the number of categorical values of feature i. And one additional binary
indicator, di,c equal to 1 if feature i takes continuous value.

69

4. Counterfactual optimization
The conditions defining a mixed polytope for a feature i are thus:

ki∑
j=1

di,j + di,c = 1 (4.9)

Fi − li + ui = ci (4.10)
0 ≤ li ≤ (Fi − Li)di,c (4.11)
0 ≤ ui ≤ (Ui − Fi)di,c (4.12)
di,j ∈ {0, 1} ∀j ∈ {1, 2, . . . , ki} ∪ {c} (4.13)

We encode fully continuous features in this way too.

4.1.2 Additions to the formulation

The formulation, as it stands, does not correctly account for categorical
features. The original implementation mapping prefers the choice represented
by value 0 (the first index of the one-hot encoding). It does so because of a
simplification in the Python implementation, where it used the dc variable
for the first categorical value. The dc otherwise represents only the change to
use the continuous spectrum.

That decision variable was disregarded in the minimization because it
would lead to increased penalization for switching to the continuous spectrum.
Thus, instead of being represented as a change of 2 weighed binary variables, a
change to option 0 meant only a change in 1, making it significantly “cheaper”.

Another issue with this representation was the additional continuous vari-
able without any meaning. Since all features were assumed to be continuous
or mixed (continuous, with some categorical values for reasons of missing
data, etc.), there was always a continuous variable. Any change in it was
minimized, so in the original application to linear models, this posed no issues.
However, applied to NNs, the objective function space is so varied that a
change in such nonsensical continuous value can positively influence the result
of the computation. For example, it was possible to obtain values like 0.2
for features where 1 encoded male and 0 encoded female. This happened
because when dc = 1 to represent that the value is “female”, nothing was in
the way of setting some non-zero value to ui = 0.2 that was added together
with Fi = 0 to the final odd value.

This implementation flaw led us to extend the encoding for pure categorical

70

.............................4.2. Encoding of the neural network

features. For continuous and mixed continuous features, this works exactly
the same way. But when a categorical feature is encoded, the decision variable
for shifting to a continuous spectrum is replaced by a weighted binary decision
variable and given as input to the model instead of the continuous variant.
Such encoding is thus a standard one-hot encoding. For a fully categorical
feature i with ki possible values:

ki∑
j=1

di,j = 1 (4.14)

di,j ∈ {0, 1} ∀j ∈ {1, 2, . . . , ki} (4.15)

4.2 Encoding of the neural network

For encoding the neural network, we used the MIP model by Fischetti and
Jo [2018]. In our case, the weights of the neural network are parameters, not
variables, since the MIP formulation does not optimize them.

We limit ourselves, as is common, only to Rectified Linear Unit (ReLU)
activation function. We also assume fully connected linear (dense) layers
only. Let our network have K such layers. A ReLU activated k-th layer for
k ∈ {1, . . . , K} could be represented in computation as:

xk = ReLU(W kxk−1 + bk)

where W k and bk are a weight matrix and a bias vector of k-th layer respec-
tively, and xk is the output of k-th layer. The x0 is thus the encoded input
vector x, and xK is the output of the neural network.

Computation of a j-th neuron of k-th layer is encoded into MIP conditions
as follows:

nk−1∑
i=1

wk
i,jxk−1

i + bk
j = xk

j − sk
j (4.16)

xk
j , sk

j ≥ 0 (4.17)
zk

j ∈ {0, 1} (4.18)
zk

j = 1 =⇒ xk
j ≤ 0 (4.19)

zk
j = 0 =⇒ sk

j ≤ 0 (4.20)

where nk is the number of neurons in k-th layer and n0 is the size of input
vector. outk

i is the output value of i-th neuron in the k-th layer. w and b

71

4. Counterfactual optimization
correspond to the weights and biases of the neural network. sk

j represents
the possible negative output of the neuron before being discarded by ReLU.
Notice that negative contributions of the previous layer s

(k−1)
j are not present

in the formulation.

The binary variable zk
j secures the uniqueness of the solution, setting either

the output to be influenced either negatively or positively by setting the other
value to 0.

The implication condition (constraints (4.19) and (4.20)) is implemented
in most modern solvers or can be implemented by a set of standard big-M
conditions.

4.2.1 Modifications

Because our goal is to generate multiple closest solutions, we ran into problems
with generating multiple solutions with the same counterfactuals. This is
caused by a known problem with indicators that decide whether the output
of a node is positive or negative. This indicator is loosely bound if neuron
xk

j outputs 0. The indicator zk
j can be 0 or 1 in such a case. This generates

multiple MIP solutions with the same inputs. An attempt to battle this was
made by adding a constraint

zk
j ≤ sk

j ·M (4.21)

where M is an arbitrarily high number. The lowest possible value of sk
j for

your neural network will equal 1/M . This is constrained by the numerical
precision of the solver.

4.3 Counterfact encoding

Now that we have the formulation of the change in input and the model
computation, we need only the condition to require the change in the output
of the model.

Many variants of output functions could be modeled, and we refer the
reader to the vast existing literature [e.g. Fischetti and Jo, 2018; Akutsu and

72

.................................. 4.4. Proposed functions

Nagamochi, 2019]. For our case, we present the case of binary classification
and assume we decide based on whether the output of a single output neuron
is a negative or positive number. This corresponds to a standard setting
without sigmoid as the last activation function. Constraints for such a decision
in our MIP formulation are then:

S · xK
1 ≥ α (4.22)

where S is the sign of the desired result, xK
1 is the single output of the

network, and α ≥ 0 is a margin that can be used to introduce a margin to
the decision. We usually choose α = 0.

The complete formulation combines all presented constraints, depending
on the type of features in the input, the number, and size of the layers, etc.
The input vector x0 (equivalent to x̄) is represented in MIP by correctly
concatenating one hot binary indicator and continuous variables. We used
Gurobi solver [Gurobi Optimization, LLC, 2023] to solve the model.

4.4 Proposed functions

Now, being able to generate sets of close counterfactuals, we can generate the
counterfactuals for sets of validation samples and compare the distributions
for each feature. Then we combine the values of all features into one value
representing some notion of explainability.

We propose three novel functions to track the performance of a NN model
with respect to the ability to produce valuable counterfactuals. The first two
use standard Shannon entropy, and the third uses Wasserstein 2-distance,
one of the most useful variants from the Wasserstein distance family [Villani,
2009].

4.4.1 Entropy-based functions

The first two measures are a straightforward usage of Shannon entropy. We
first estimate the distribution of each feature, then compute its entropy. Then
we compute the difference between the entropy of the feature in the generated
counterfactuals and “factuals” (true data) that are classified as the same

73

4. Counterfactual optimization
class. Finally, we average the measures over the features to get a single value.
Formally, we would write it as:

Ue1(X) = 1
p

p∑
i=1

(H(CX [i])−H(X[i])) (4.23)

where X is a validation set, CX is the set of generated counterfactuals for X,
square brackets [i] denote that we take the value of the feature i from the set
of all features, p is the number of features, and H represents the computation
of Shannon entropy of the distribution sampled by the values in the set.

The second proposed function is similar in that it uses entropy and differ-
ence, but now we compute the entropy last. We first compute the difference
between a factual and its counterfactuals, that is, samples of a different class.
Then we compute the entropy for each feature and average that, similarly
to the first function. We again compute this for each target class separately.
Formally,

Ue2(X) = 1
p

p∑
i=1
H({d(x[i], Cx[i]) | ∀x ∈ X}) (4.24)

s.t. d(x, Y) = {x− y | ∀y ∈ Y } (4.25)

where Cx is set of close counterfactuals of a single sample x and all other
symbols are the same as for the Ue1(X).

The first function Ue1(X) should be minimized since our goal is to have
the counterfactuals represent the original distribution as well as possible to
generate valid and plausible explanations. In the second example, we wish to
maximize the function because we want the counterfactual representatives to
be generated differently for each sample. We want maximal diversity.

4.4.2 Wasserstein-based function

Wasserstein 2-distance is a standard metric used as a distance measure for
probability distributions. Because Wasserstein distances require a metric
space, it enables the user to set custom distances between certain features of
the data.

We compute the utility function similarly to Ue1 (4.23), but instead of the
difference between entropies, we compute the Wasserstein 2-distance between

74

.................................. 4.4. Proposed functions

the distributions directly:

Uwd(X) = 1
p

p∑
i=1
W2(CX [i], X[i]) (4.26)

where all symbols have the same meaning as in previous formulations, and
W2 is the Wasserstein 2-distance. Similarly to Ue1 , we would use this function
to compare samples and counterfactuals of the same class and minimize this
function.

The way these utility functions could be used is, for example, to get an
“explainability” measure that could help the developer to see during training
when their model is in the best conditions. In this way, these proposed
measures could work quite similarly to the validation set error in the training
process of Neural Networks.

The implementation of the whole MIP formulation with all of the optimiz-
able functions is publicly available at:
https://github.com/Epanemu/counterfactual_explanations

75

https://github.com/Epanemu/counterfactual_explanations

76

Chapter 5

Conclusion

We have shown that not only that there is a place for Mixed-integer program-
ming (MIP) in Machine learning (ML). We have described increasing interest
in these applications and supported this interest by adding our own.

In Chapter 2 we went through some existing approaches of using MIP and
direct MIP formulations of ML models. We described its use regarding NNs
and decision trees in more detail. We described the importance of MIP in
XAI, and the usefulness of tweaking the objective function to one’s needs. We
also summarized the definition, properties, and importance of counterfactual
explanations. We pointed out many variants of MIP formulations of the
counterfactual generation.

In Chapter 3, because the local explainability of the model’s decisions
is not enough in many cases, in Chapter 3 we took it upon ourselves to
produce a MIP formulation that improves the interpretability of decision trees
in general. By tackling the unfairness of accuracy distribution over leaves,
we introduced the idea of fair explanation. With that, we proposed a MIP
formulation of Classification trees that optimize the leaf accuracy. We call it
Fair Classification Tree (FCT).

We performed extensive testing of FCT and showed our method to work
well. Compared to the widely used CART, we improved the leaf accuracy
by more than 11 percentage points on average. Within the experimentation,
our method has shown some surprising results and made us question our own
configuration. We outlined everything a user of the FCT model might need
in order to decide for themselves which configuration suits them best.

77

5. Conclusion......................................
In Chapter 4, we selected one of the many formulations for counterfactual

generation and used it to generate a set of counterfactuals within some
distance to the optimum. We added better support for the input features by
including proper definitions for the pure categorical variables. We further
proposed three utility functions that a model could optimize to achieve
improved post-hoc explainability.

5.1 Furhter improvements

All goals of the thesis were completed, and the last of them was completed in
the greatest detail. That being said, there are always more things to do.

Leaf accuracy oriented trees

While this area underwent a close inspection and many experiments were
performed, there are also topics requiring further exploration.

The most significant topic is the trees of depth 3 outperforming trees of
depth 4, which were selected as the reference configuration. This was a
surprising result for us since in earlier testing trees of depth 4 seemed like the
tipping point where sufficient depth met the computational tractability of the
formulation. We were unfortunately not able to provide further comparing
tests due to time limitations. Nonetheless, it is important for future work
to investigate the relation between low depth and high leaf accuracy. There
might be more reasons for the shallower trees outperforming the deeper ones
other than the less complicated formulation and better performance of the
MIP solver. It is certainly an exciting area waiting for further research.

The performance increase of the shallower tree also suggests that for deeper
trees, similar results could be achieved given enough time. The implementation
of efficiency improvements regarding the speed of the formulation solving
might thus influence the ordering of the performance of the FCTs based on
their depth.

Otherwise, it might be beneficial to do further testing of the intricacies of
varying values of other hyperparameters, especially the minimum of samples
in a leaf (Nmin).

78

.................................5.1. Furhter improvements

However, there is only so much time in one student’s life. We believe to
have done a fair attempt at comparison of our proposed FCT formulation to
other methods as well as to various other configurations of FCT.

Counterfactual optimizers

There are multiple things requiring future work regarding the counterfactual
optimization functions. A couple of obstacles are in the way of performing
relevant experiments with the functions. For those reasons and the lack of
interest at that time, no in-depth experiments were performed.

The question of how would one measure the quality of a counterfactual
explanation is a non-trivial one. The measure is influenced by subjective
opinions about explanations. It would thus make sense to require diversity,
but we also should exclude non-actionable features from this measure. Many
such concerns are needed to be taken into account.

Another issue is more technical, it is related to the counterfactual gener-
ation and the issue of generating multiple same counterfactuals because of
unfortunate encoding of ReLU. This issue was tackled by incorporating a
constraint, which limits the expressive capabilities of the network or reaches
the point of numerical instability, depending on the tightness of the bound.
This makes the generation less reliable to produce for example a fixed number
of closest counterfactuals. A possible solution is to use a max() function
instead. This leads to more stable results, but it also further decreases speed
because of non-linearity.

Even without the max(), the utility functions are lacking in speed. The
counterfactual generation takes quite a bit of time. The time demand also
increases with the increase in the relative range to the optimum. This measure
thus can take an order of magnitude more time than standard validation
measures performed during the training.

The next good question is the landscape of these functions. It is possible
to search the landscape efficiently? How would one combine such a measure
with standard accuracy measures? We leave many questions unanswered to
stimulate further work on this topic.

79

5. Conclusion......................................
5.2 Resources

All code and aggregated testing data are available in the respective repositories
of the 2 projects.

Regarding the FCT model and the methods connected to it, this is imple-
mented and presented at:
https://github.com/Epanemu/FCT

For the optimization functions using counterfactual explanations generation,
the repository can be found at:
https://github.com/Epanemu/counterfactual_explanations/

80

https://github.com/Epanemu/FCT
https://github.com/Epanemu/counterfactual_explanations/

Appendix A

Acronyms

AI Artificial Intelligence. 1–3, 5

CART Classification and Regression Trees algorithm. vii, viii, 13–15, 31–39,
41–46, 49, 53–56, 58, 60, 62, 63, 65, 77

EM Expectation–maximization algorithm. 6

FCT Fair Classification Tree. iv, v, vii, viii, 14, 15, 17, 19, 21, 23, 25, 27–30,
32–37, 42, 43, 47, 48, 50, 57, 59, 61–63, 65, 77–80, 91, 95, 96

MIP Mixed-integer programming. iv, v, 2, 3, 5–17, 19–25, 27, 28, 32, 33,
41, 61, 62, 67, 68, 71–73, 75, 77, 78

ML Machine learning. iv, v, 3, 5–12, 14, 77

NN Artifical Neural network. 3, 6–8, 10, 11, 68, 70, 73, 77

OCT Optimal Classification Tree. v, vii, 7, 14, 19–21, 24, 25, 27–29, 32, 36,
44, 45, 56–58

PCA Principal Component Analysis. 9, 10

ReLU Rectified Linear Unit. 71, 72, 79

SVM Support vector machine. 7, 9

XAI Explainable Artificial Intelligence. 1, 34, 77

81

82

Appendix B

Bibliography

Amina Adadi and Mohammed Berrada. Peeking Inside the Black-Box: A
Survey on Explainable Artificial Intelligence (XAI). IEEE Access, 6:52138–
52160, 2018. ISSN 2169-3536. doi: 10.1109/ACCESS.2018.2870052.

Sina Aghaei, Andres Gomez, and Phebe Vayanos. Learning Optimal Classifi-
cation Trees: Strong Max-Flow Formulations, May 2020.

Sina Aghaei, Andrés Gómez, and Phebe Vayanos. Strong Optimal Classifica-
tion Trees, February 2022.

Tatsuya Akutsu and Hiroshi Nagamochi. A Mixed Integer Linear Program-
ming Formulation to Artificial Neural Networks. In Proceedings of the 2nd
International Conference on Information Science and Systems, ICISS ’19,
pages 215–220, New York, NY, USA, March 2019. Association for Comput-
ing Machinery. ISBN 978-1-4503-6103-3. doi: 10.1145/3322645.3322683.

Laura A. Albert. A mixed-integer programming model for identifying intuitive
ambulance dispatching policies. Journal of the Operational Research Society,
0(0):1–12, November 2022. ISSN 0160-5682. doi: 10.1080/01605682.2022.
2139646.

Zacharie Alès, Valentine Huré, and Amélie Lambert. New optimization models
for optimal classification trees, November 2022.

Brandon Alston, Hamidreza Validi, and Illya V. Hicks. Mixed integer linear
optimization formulations for learning optimal binary classification trees,
June 2022.

Ross Anderson, Joey Huchette, Will Ma, Christian Tjandraatmadja, and
Juan Pablo Vielma. Strong mixed-integer programming formulations for

83

B. Bibliography.....................................
trained neural networks. Mathematical Programming, 183(1):3–39, Septem-
ber 2020. ISSN 1436-4646. doi: 10.1007/s10107-020-01474-5.

Hari Bandi, Dimitris Bertsimas, and Rahul Mazumder. Learning a Mix-
ture of Gaussians via Mixed-Integer Optimization. Informs Journal on
Optimization, April 2019. doi: 10.1287/ijoo.2018.0009.

Mark Bartlett and James Cussens. Advances in Bayesian Network Learning
using Integer Programming, March 2015.

Osbert Bastani, Carolyn Kim, and Hamsa Bastani. Interpreting Blackbox
Models via Model Extraction, January 2019.

Marcelo Antônio Mendes Bastos, Humberto Brandão César de Oliveira, and
Cristiano Arbex Valle. Ensemble pruning via an integer programming
approach with diversity constraints, May 2022.

P. Bertolazzi, G. Felici, P. Festa, G. Fiscon, and E. Weitschek. Integer pro-
gramming models for feature selection: New extensions and a randomized
solution algorithm. European Journal of Operational Research, 250(2):
389–399, April 2016. ISSN 0377-2217. doi: 10.1016/j.ejor.2015.09.051.

Dimitris Bertsimas and Jack Dunn. Optimal classification trees. Machine
Learning, 106(7):1039–1082, July 2017. ISSN 1573-0565. doi: 10.1007/
s10994-017-5633-9.

Dimitris Bertsimas and Rahul Mazumder. Least quantile regression via
modern optimization. The Annals of Statistics, 42(6):2494–2525, December
2014. ISSN 0090-5364, 2168-8966. doi: 10.1214/14-AOS1223.

Dimitris Bertsimas, Angela King, and Rahul Mazumder. Best subset selection
via a modern optimization lens. The Annals of Statistics, 44(2):813–852,
April 2016. ISSN 0090-5364, 2168-8966. doi: 10.1214/15-AOS1388.

Victor Blanco, Alberto Japón, and Justo Puerto. Robust optimal classification
trees under noisy labels. Advances in Data Analysis and Classification, 16
(1):155–179, 2022. ISSN 18625355. doi: 10.1007/s11634-021-00467-2.

L. Breiman, J. Friedman, C.J. Stone, and R.A. Olshen. Classification and
Regression Trees. Taylor & Francis, 1984. ISBN 978-0-412-04841-8.

Miguel Á Carreira-Perpiñán and Suryabhan Singh Hada. Counterfactual
Explanations for Oblique Decision Trees:Exact, Efficient Algorithms. Pro-
ceedings of the AAAI Conference on Artificial Intelligence, 35(8):6903–6911,
May 2021. ISSN 2374-3468. doi: 10.1609/aaai.v35i8.16851.

Tianqi Chen and Carlos Guestrin. XGBoost: A scalable tree boosting system.
In Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD ’16, pages 785–794, New
York, NY, USA, 2016. Association for Computing Machinery. ISBN 978-1-
4503-4232-2. doi: 10.1145/2939672.2939785.

84

..................................... B. Bibliography

Ziyi Chen, Patrick De Causmaecker, and Yajie Dou. A combined mixed
integer programming and deep neural network-assisted heuristics algorithm
for the nurse rostering problem. Applied Soft Computing, 136:109919, March
2023. ISSN 1568-4946. doi: 10.1016/j.asoc.2022.109919.

Yu-Neng Chuang, Guanchu Wang, Fan Yang, Zirui Liu, Xuanting Cai, Meng-
nan Du, and Xia Hu. Efficient XAI Techniques: A Taxonomic Survey,
February 2023.

IBM ILOG Cplex. V12. 1: User’s manual for CPLEX. International Business
Machines Corporation, 46(53):157, 2009.

James Cussens. Bayesian network learning with cutting planes. In Proceedings
of the Twenty-Seventh Conference on Uncertainty in Artificial Intelligence,
UAI’11, pages 153–160, Arlington, Virginia, USA, July 2011. AUAI Press.
ISBN 978-0-9749039-7-2.

DARPA. Broad agency announcement explainable artificial intelligence (xai).
Technical report, DARPA, August 2016.

Ayhan Demiriz and Kristin P. Bennett. Optimization Approaches to Semi-
Supervised Learning. In Michael C. Ferris, Olvi L. Mangasarian, and
Jong-Shi Pang, editors, Complementarity: Applications, Algorithms and
Extensions, Applied Optimization, pages 121–141. Springer US, Boston,
MA, 2001. ISBN 978-1-4757-3279-5. doi: 10.1007/978-1-4757-3279-5_6.

Santanu S. Dey, R. Mazumder, and Guanyi Wang. A convex integer program-
ming approach for optimal sparse PCA. arXiv: Optimization and Control,
October 2018.

Federico D’Onofrio, Giorgio Grani, Marta Monaci, and Laura Palagi. Margin
Optimal Classification Trees, January 2023.

Vivek Dua. A mixed-integer programming approach for optimal configuration
of artificial neural networks. Chemical Engineering Research and Design, 88
(1):55–60, January 2010. ISSN 0263-8762. doi: 10.1016/j.cherd.2009.06.007.

Jacob Feldman. Minimization of Boolean complexity in human concept
learning. Nature, 407(6804):630–633, October 2000. ISSN 0028-0836,
1476-4687. doi: 10.1038/35036586.

Aaron Ferber, Bryan Wilder, Bistra Dilkina, and Milind Tambe. MIPaaL:
Mixed Integer Program as a Layer. Proceedings of the AAAI Conference
on Artificial Intelligence, 34(02):1504–1511, April 2020. ISSN 2374-3468.
doi: 10.1609/aaai.v34i02.5509.

Rosa Figueiredo and Gisele Moura. Mixed integer programming formulations
for clustering problems related to structural balance. Social Networks, 35(4):
639–651, October 2013. ISSN 0378-8733. doi: 10.1016/j.socnet.2013.09.002.

85

B. Bibliography.....................................
Matteo Fischetti and Jason Jo. Deep neural networks and mixed integer

linear optimization. Constraints, 23(3):296–309, July 2018. ISSN 1572-9354.
doi: 10.1007/s10601-018-9285-6.

Alexandre M. Florio, Pedro Martins, Maximilian Schiffer, Thiago Serra, and
Thibaut Vidal. Optimal Decision Diagrams for Classification, May 2022.

Fred Glover. Future paths for integer programming and links to artificial
intelligence. Computers & Operations Research, 13(5):533–549, January
1986. ISSN 0305-0548. doi: 10.1016/0305-0548(86)90048-1.

Leo Grinsztajn, Edouard Oyallon, and Gael Varoquaux. Why do tree-based
models still outperform deep learning on typical tabular data? In S. Koyejo,
S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh, editors, Ad-
vances in Neural Information Processing Systems, volume 35, pages 507–520.
Curran Associates, Inc., 2022.

M. Grötschel and Y. Wakabayashi. A cutting plane algorithm for a clustering
problem. Mathematical Programming, 45(1):59–96, August 1989. ISSN
1436-4646. doi: 10.1007/BF01589097.

Riccardo Guidotti. Counterfactual explanations and how to find them: Liter-
ature review and benchmarking. Data Mining and Knowledge Discovery,
April 2022. ISSN 1573-756X. doi: 10.1007/s10618-022-00831-6.

Gurobi Optimization, LLC. Gurobi optimizer reference manual, 2023.

Alvin X Han, Edyth Parker, Frits Scholer, Sebastian Maurer-Stroh, and
Colin A Russell. Phylogenetic Clustering by Linear Integer Programming
(PhyCLIP). Molecular Biology and Evolution, 36(7):1580–1595, July 2019.
ISSN 0737-4038. doi: 10.1093/molbev/msz053.

Tim Head, Manoj Kumar, Holger Nahrstaedt, Gilles Louppe, and Iaroslav
Shcherbatyi. Scikit-optimize/scikit-optimize. Zenodo, October 2021.

Krystal Hu. ChatGPT sets record for fastest-growing user base - analyst note.
Reuters, February 2023.

Itay Hubara, Yury Nahshan, Yair Hanani, Ron Banner, and Daniel Soudry.
Improving Post Training Neural Quantization: Layer-wise Calibration and
Integer Programming, December 2020.

Laurent Hyafil and Ronald L. Rivest. Constructing optimal binary decision
trees is NP-complete. Information Processing Letters, 5(1):15–17, May
1976. ISSN 0020-0190. doi: 10.1016/0020-0190(76)90095-8.

Nathanael Jo, Sina Aghaei, Andrés Gómez, and Phebe Vayanos. Learning
Optimal Fair Classification Trees: Trade-offs Between Interpretability,
Fairness, and Accuracy, May 2023.

86

..................................... B. Bibliography

Julia Angwin, Jeff Larson, Lauren Kirchner, and Surya Mattu. Machine
Bias. https://www.propublica.org/article/machine-bias-risk-assessments-
in-criminal-sentencing, May 2016.

Kentaro Kanamori, Takuya Takagi, Ken Kobayashi, and Hiroki Arimura.
DACE: Distribution-Aware Counterfactual Explanation by Mixed-Integer
Linear Optimization. In Proceedings of the Twenty-Ninth International
Joint Conference on Artificial Intelligence, pages 2855–2862, Yokohama,
Japan, July 2020. International Joint Conferences on Artificial Intelligence
Organization. ISBN 978-0-9992411-6-5. doi: 10.24963/ijcai.2020/395.

Kentaro Kanamori, Takuya Takagi, Ken Kobayashi, Yuichi Ike, Kento Ue-
mura, and Hiroki Arimura. Ordered Counterfactual Explanation by Mixed-
Integer Linear Optimization: 35th AAAI Conference on Artificial Intelli-
gence, AAAI 2021. 35th AAAI Conference on Artificial Intelligence, AAAI
2021, pages 11564–11574, 2021.

Elias Khalil, Pierre Le Bodic, Le Song, George Nemhauser, and Bistra Dilkina.
Learning to Branch in Mixed Integer Programming. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 30, February 2016. doi:
10.1609/aaai.v30i1.10080.

Matthias König, Holger H. Hoos, and Jan N. van Rijn. Speeding up neu-
ral network robustness verification via algorithm configuration and an
optimised mixed integer linear programming solver portfolio. Machine
Learning, 111(12):4565–4584, December 2022. ISSN 1573-0565. doi:
10.1007/s10994-022-06212-w.

Simge Küçükyavuz, A. Shojaie, Hasan Manzour, and Linchuan Wei. Con-
sistent Second-Order Conic Integer Programming for Learning Bayesian
Networks. ArXiv, May 2020.

Jannis Kurtz. Ensemble Methods for Robust Support Vector Machines using
Integer Programming, March 2022.

Andrew Kusiak. Analysis of integer programming formulations of clustering
problems. Image and Vision Computing, 2(1):35–40, February 1984. ISSN
0262-8856. doi: 10.1016/0262-8856(84)90042-8.

Eduardo Laber, Lucas Murtinho, and Felipe Oliveira. Shallow decision trees
for explainable k-means clustering. Pattern Recognition, 137:109239, May
2023. ISSN 0031-3203. doi: 10.1016/j.patcog.2022.109239.

Sebastián Maldonado, Juan Pérez, Richard Weber, and Martine Labbé.
Feature selection for Support Vector Machines via Mixed Integer Linear
Programming. Information Sciences, 279:163–175, September 2014. ISSN
0020-0255. doi: 10.1016/j.ins.2014.03.110.

Rahul Mazumder and Peter Radchenko. The Discrete Dantzig Selector:
Estimating Sparse Linear Models via Mixed Integer Linear Optimization.

87

B. Bibliography.....................................
IEEE Transactions on Information Theory, 63(5):3053–3075, May 2017.
ISSN 1557-9654. doi: 10.1109/TIT.2017.2658023.

M. Menickelly, O. Günlük, J. Kalagnanam, and K. Scheinberg. Optimal
Generalized Decision Trees via Integer Programming. ArXiv, December
2016.

Atsushi Miyauchi, Tomohiro Sonobe, and Noriyoshi Sukegawa. Exact Clus-
tering via Integer Programming and Maximum Satisfiability. Proceedings
of the AAAI Conference on Artificial Intelligence, 32(1), April 2018. ISSN
2374-3468. doi: 10.1609/aaai.v32i1.11519.

Kiarash Mohammadi, Amir-Hossein Karimi, Gilles Barthe, and Isabel Valera.
Scaling Guarantees for Nearest Counterfactual Explanations. In Proceedings
of the 2021 AAAI/ACM Conference on AI, Ethics, and Society, AIES ’21,
pages 177–187, New York, NY, USA, July 2021. Association for Computing
Machinery. ISBN 978-1-4503-8473-5. doi: 10.1145/3461702.3462514.

Axel Parmentier and Thibaut Vidal. Optimal Counterfactual Explanations
in Tree Ensembles. In Proceedings of the 38th International Conference on
Machine Learning, pages 8422–8431. PMLR, July 2021.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Pas-
sos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn:
Machine learning in Python. Journal of Machine Learning Research, 12:
2825–2830, 2011.

Eduardo Queiroga, Anand Subramanian, Rosa Figueiredo, and Yuri Frota.
Integer programming formulations and efficient local search for relaxed
correlation clustering. Journal of Global Optimization, 81(4):919–966,
December 2021. ISSN 1573-2916. doi: 10.1007/s10898-020-00989-7.

Cynthia Rudin. Stop explaining black box machine learning models for high
stakes decisions and use interpretable models instead. Nature Machine
Intelligence, 1(5):206–215, May 2019. ISSN 2522-5839. doi: 10.1038/
s42256-019-0048-x.

Cynthia Rudin and Şeyda Ertekin. Learning customized and optimized lists
of rules with mathematical programming. Mathematical Programming
Computation, 10(4):659–702, December 2018. ISSN 1867-2957. doi: 10.
1007/s12532-018-0143-8.

Chris Russell. Efficient Search for Diverse Coherent Explanations. In Proceed-
ings of the Conference on Fairness, Accountability, and Transparency, FAT*
’19, pages 20–28, New York, NY, USA, January 2019. Association for Com-
puting Machinery. ISBN 978-1-4503-6125-5. doi: 10.1145/3287560.3287569.

Waddah Saeed and Christian Omlin. Explainable AI (XAI): A Systematic
Meta-Survey of Current Challenges and Future Opportunities, November
2021.

88

..................................... B. Bibliography

Burcu Sağlam, F. Sibel Salman, Serpil Sayın, and Metin Türkay. A mixed-
integer programming approach to the clustering problem with an application
in customer segmentation. European Journal of Operational Research, 173
(3):866–879, September 2006. ISSN 0377-2217. doi: 10.1016/j.ejor.2005.04.
048.

Hossein Shahrabi Farahani and Jens Lagergren. Learning Oncogenetic Net-
works by Reducing to Mixed Integer Linear Programming. PLoS ONE, 8
(6):e65773, June 2013. ISSN 1932-6203. doi: 10.1371/journal.pone.0065773.

Hasan Sildir and Erdal Aydin. A Mixed-Integer linear programming based
training and feature selection method for artificial neural networks using
piece-wise linear approximations. Chemical Engineering Science, 249:
117273, February 2022. ISSN 0009-2509. doi: 10.1016/j.ces.2021.117273.

Foo Yoon-Pin Simon and Takefuji. Integer linear programming neural
networks for job-shop scheduling. In IEEE 1988 International Con-
ference on Neural Networks, pages 341–348 vol.2, July 1988. doi:
10.1109/ICNN.1988.23946.

Yunhao Tang, Shipra Agrawal, and Yuri Faenza. Reinforcement learning
for integer programming: Learning to cut. In Hal Daumé III and Aarti
Singh, editors, Proceedings of the 37th International Conference on Machine
Learning, volume 119 of Proceedings of Machine Learning Research, pages
9367–9376. PMLR, July 2020.

Tomas Thorbjarnarson and Neil Yorke-Smith. On Training Neural Networks
with Mixed Integer Programming. In IJCAI-PRICAI’20 Workshop on Data
Science Meets Optimisation, 2021.

Vincent Tjeng, Kai Y. Xiao, and Russ Tedrake. Evaluating Robustness
of Neural Networks with Mixed Integer Programming. In International
Conference on Learning Representations, November 2017.

Fadime Üney and Metin Türkay. A mixed-integer programming approach to
multi-class data classification problem. European Journal of Operational
Research, 173(3):910–920, September 2006. ISSN 0377-2217. doi: 10.1016/
j.ejor.2005.04.049.

Berk Ustun, Alexander Spangher, and Yang Liu. Actionable Recourse in
Linear Classification. In Proceedings of the Conference on Fairness, Ac-
countability, and Transparency, pages 10–19, Atlanta GA USA, January
2019. ACM. ISBN 978-1-4503-6125-5. doi: 10.1145/3287560.3287566.

Sicco Verwer and Yingqian Zhang. Learning Decision Trees with Flexible Con-
straints and Objectives Using Integer Optimization. In Domenico Salvagnin
and Michele Lombardi, editors, Integration of AI and OR Techniques in
Constraint Programming, Lecture Notes in Computer Science, pages 94–103,
Cham, 2017. Springer International Publishing. ISBN 978-3-319-59776-8.
doi: 10.1007/978-3-319-59776-8_8.

89

B. Bibliography.....................................
Sicco Verwer and Yingqian Zhang. Learning Optimal Classification Trees

Using a Binary Linear Program Formulation. Proceedings of the AAAI
Conference on Artificial Intelligence, 33(01):1625–1632, July 2019. ISSN
2374-3468, 2159-5399. doi: 10.1609/aaai.v33i01.33011624.

Sicco Verwer, Yingqian Zhang, and Qing Chuan Ye. Auction optimization
using regression trees and linear models as integer programs. Artificial
Intelligence, 244:368–395, March 2017. ISSN 0004-3702. doi: 10.1016/j.
artint.2015.05.004.

Cédric Villani. The Wasserstein distances. In Cédric Villani, editor, Optimal
Transport: Old and New, Grundlehren Der Mathematischen Wissenschaften,
pages 93–111. Springer, Berlin, Heidelberg, 2009. ISBN 978-3-540-71050-9.
doi: 10.1007/978-3-540-71050-9_6.

Hrishikesh D. Vinod. Integer Programming and the Theory of Grouping.
Journal of the American Statistical Association, 64(326):506–519, June
1969. ISSN 0162-1459. doi: 10.1080/01621459.1969.10500990.

Daniël Vos and Sicco Verwer. Robust Optimal Classification Trees against
Adversarial Examples. Proceedings of the AAAI Conference on Artificial
Intelligence, 36(8):8520–8528, June 2022. ISSN 2374-3468. doi: 10.1609/
aaai.v36i8.20829.

Thomas Vossen, Michael Ball, Amnon Lotem, and Dana Nau. On the use
of integer programming models in AI planning. In Proceedings of the
16th International Joint Conference on Artifical Intelligence - Volume 1,
IJCAI’99, pages 304–309, San Francisco, CA, USA, July 1999. Morgan
Kaufmann Publishers Inc.

Jiayi Zhang, Chang Liu, Xijun Li, Hui-Ling Zhen, Mingxuan Yuan, Yawen
Li, and Junchi Yan. A survey for solving mixed integer programming via
machine learning. Neurocomputing, 519(C):205–217, January 2023. ISSN
0925-2312. doi: 10.1016/j.neucom.2022.11.024.

Zhi-Hua Zhou. Machine Learning. Springer Nature, August 2021. ISBN
9789811519673.

Zhi-Hua Zhou and Zhao-Qian Chen. Hybrid decision tree. Knowledge-
Based Systems, 15(8):515–528, November 2002. ISSN 0950-7051. doi:
10.1016/S0950-7051(02)00038-2.

Jianshen Zhu, Chenxi Wang, Aleksandar Shurbevski, Hiroshi Nagamochi, and
Tatsuya Akutsu. A Novel Method for Inference of Chemical Compounds
of Cycle Index Two with Desired Properties Based on Artificial Neural
Networks and Integer Programming. Algorithms, 13(5):124, May 2020.
ISSN 1999-4893. doi: 10.3390/a13050124.

90

Appendix C

Supplementary material

C.1 Dataset descriptions

For the experiments on FCT, we used the classification part of the datasets
from the benchmark of mid-sized tabular data, created by [Grinsztajn et al.,
2022]. The datasets, with their properties, are listed in Table C.1. Training
sets contained 80% of the total amount of samples or 10 000 samples, whichever
was higher. This constraint affects 16 out of the 23 total datasets, though
some only minimally. The affected datasets have the number of samples in
the Table C.1 in bold.

In tests, we used 10 random seeds that determined the train-test splits, of
each dataset. Datasets are split into two kinds. Categorical and numerical.
Categorical are those that contain at least one categorical feature. Numerical
datasets have no categorical features. Four numerical datasets are the same
as categorical datasets but with the categorical features removed (covertype,
default-of-credit-card-clients, electricity, eye_movements). Only
datasets without missing features and with sufficient complexity are contained
in the benchmark. For a more detailed methodology of how the datasets were
selected, we refer the reader to the original paper. [Grinsztajn et al., 2022]

91

C. Supplementary material
categorical datasets # samples # features # classes

albert 58252 31 2
compas-two-years 4966 11 2
covertype 423680 54 2
default-of-credit-card-clients 13272 21 2
electricity 38474 8 2
eye_movements 7608 23 2
road-safety 111762 32 2

numerical datasets # samples # features # classes

bank-marketing 10578 7 2
Bioresponse 3434 419 2
california 20634 8 2
covertype 566602 32 2
credit 16714 10 2
default-of-credit-card-clients 13272 20 2
Diabetes130US 71090 7 2
electricity 38474 7 2
eye_movements 7608 20 2
Higgs 940160 24 2
heloc 10000 22 2
house_16H 13488 16 2
jannis 57580 54 2
MagicTelescope 13376 10 2
MiniBooNE 72998 50 2
pol 10082 26 2

Table C.1: Listed classification datasets of the tabular benchmark. Train sets
contained 80% of the total amount of samples or 10 000 samples, whichever was
lower. 16 affected datasets have the number of samples in bold.

C.2 Hyperparameter search distributions

We needed to optimize hyperparameters for some quickly trainable models.
We used Bayesian hyperparameter search for that purpose.

Extending XGBoost models

For the hyperparameter search of XGBoost models in leaves, we used the
distributions listed in Table C.2. The parameters are almost all the same as
used by Grinsztajn et al. [2022]. Only the number of estimators and maximal

92

.......................... C.2. Hyperparameter search distributions

depth were more constrained to account for the fewer samples available for
training.

The Bayesian optimization was run for 50 iterations, with 3-fold cross-
validation in every leaf that contained enough points to perform the optimiza-
tion. The same process was used to extend all tested methods.

Parameter name Distribution [range (inclusive)]

Max depth UniformInteger [1, 7]
Number of estimators UniformInteger [10, 500]

Min child weight LogUniformInteger [1, 1e2]
Learning rate Uniform [1e-5, 0.7]

Subsample Uniform [0.5, 1]
Col sample by level Uniform [0.5, 1]
Col sample by tree Uniform [0.5, 1]

Gamma LogUniform [1e-8, 7]
Alpha LogUniform [1e-8, 1e2]

Lambda LogUniform [1, 4]

Table C.2: Distributions of hyperparameters of extending XGBoost models in
leaves. These were used in the Bayesian hyperparameter search in each leaf
separately. All distributions except Max depth and Number of estimators are the
same as in Grinsztajn et al. [2022]. The two different distributions were made
smaller to improve the optimization time and to account for lower amounts of
data.

In leaves with an insufficient amount of samples to perform the cross-
validation (less than 3 samples of at least one class in our case), we train a
model with a single tree of max depth 5.

CART models

For the hyperparameter optimization of CART models, we also used Bayesian
search, with the distributions shown in the table C.3.

The search was run for 100 iterations, with 5-fold cross-validation on the
same training data sets as our model. After this search, the best hyperparam-
eters were used to train the model on the full training data. The resulting
tree was reduced and every leaf was extended by an XGBoost model in the
same way as our models.

In comparisons in Section 3.4.8, we optimized a deeper variant of the CART.

93

C. Supplementary material
Parameter name Distribution [range (inclusive)]

Max depth UniformInteger [2, 4]
Min samples split UniformInteger [2, 60]
Min samples leaf UniformInteger [1, 60]

Max leaf nodes UniformInteger [8, 16]
Min impurity decrease Uniform [0, 0.2]

Table C.3: Distributions of hyperparameters of CART models used to compare
to our method.

Leaf Accuracy

categorical datasets CART Proposed

albert 0.4674 0.5706
compas-two-years 0.4631 0.5711
covertype 0.5166 0.7071
default-of-credit-card-clients 0.3346 0.5246
electricity 0.5404 0.6250
eye_movements 0.4356 0.4109
road-safety 0.5228 0.6158
Mean rank 1.8571 1.1429

Table C.4: Categorical datasets. Mean leaf accuracies of models on out-of-sample
data and average ranks.

The process was the same, except for initial distributions of hyperparameters
for Max depth and Max leaf nodes. Those were UniformInteger [2, 20] and
UniformInteger [8, 512] respectively.

C.3 Detailed results

We also provide the full results for each dataset. Figures C.1 and C.2 are
decomposed variants of Figure 3.6 for categorical and numerical datasets
respectively. We also provide exact results for leaf accuracy, in Tables C.4
and C.6, plus the exact results for hybrid tree accuracy, in Tables C.5 and
C.7.

The detailed results show that the proposed model outperforms the CART
model in both accuracy measures on almost all datasets and has comparable
accuracy to XGBoost.

94

................................... C.3. Detailed results

0.61 0.62 0.63 0.64 0.65
Accruacy of model

0.35

0.40

0.45

0.50

0.55

0.60

Le
af

 a
cc

ur
ac

y
albert

0.62 0.64 0.66 0.68
Accruacy of model

0.35

0.40

0.45

0.50

0.55

0.60

Le
af

 a
cc

ur
ac

y

compas-two-years

0.725 0.750 0.775 0.800 0.825 0.850
Accruacy of model

0.45

0.50

0.55

0.60

0.65

0.70

0.75

Le
af

 a
cc

ur
ac

y

covertype

0.64 0.66 0.68 0.70 0.72
Accruacy of model

0.1

0.2

0.3

0.4

0.5

0.6

Le
af

 a
cc

ur
ac

y

default-of-credit-card-clients

0.70 0.75 0.80 0.85 0.90
Accruacy of model

0.4

0.5

0.6

0.7

Le
af

 a
cc

ur
ac

y
electricity

0.550 0.575 0.600 0.625 0.650
Accruacy of model

0.25

0.30

0.35

0.40

0.45

0.50

Le
af

 a
cc

ur
ac

y

eye_movements

0.650 0.675 0.700 0.725 0.750
Accruacy of model

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

Le
af

 a
cc

ur
ac

y

road-safety

Hybrid tree
Mean OOS Accuracy
Standard deviation

Low-depth tree
Mean OOS Accuracy
Standard deviation

Mean XGBoost
Proposed model
OCT (warmstarted)
CART

Figure C.1: Detailed performance comparison FCT model on individual cate-
gorical datasets.

Hybrid-tree Accuracy

categorical datasets CART Proposed XGBoost

albert 0.6466 0.6510 0.6559
compas-two-years 0.6754 0.6772 0.6807
covertype 0.8409 0.8567 0.8658
default-of-credit-card-clients 0.7132 0.7117 0.7184
electricity 0.8808 0.8781 0.8861
eye_movements 0.6267 0.6449 0.6677
road-safety 0.7570 0.7579 0.7689
Mean rank 2.7143 2.2857 1.0000

Table C.5: Categorical datasets. Mean hybrid tree accuracies of models on
out-of-sample data and average ranks.

95

C. Supplementary material

0.675 0.700 0.725 0.750 0.775 0.800
Accruacy of model

0.2

0.3

0.4

0.5

0.6
Le

af
 a

cc
ur

ac
y

bank-marketing

0.70 0.72 0.74 0.76 0.78
Accruacy of model

0.35
0.40
0.45
0.50
0.55
0.60
0.65

Le
af

 a
cc

ur
ac

y

Bioresponse

0.75 0.80 0.85 0.90
Accruacy of model

0.4

0.5

0.6

0.7

Le
af

 a
cc

ur
ac

y

california

0.700 0.725 0.750 0.775 0.800 0.825
Accruacy of model

0.45

0.50

0.55

0.60

0.65

0.70

Le
af

 a
cc

ur
ac

y

covertype

0.72 0.74 0.76 0.78
Accruacy of model

0.50

0.55

0.60

0.65

0.70

Le
af

 a
cc

ur
ac

y

credit

0.69 0.70 0.71 0.72
Accruacy of model

0.1

0.2

0.3

0.4

0.5

0.6

Le
af

 a
cc

ur
ac

y

default-of-credit-card-clients

0.59 0.60 0.61
Accruacy of model

0.3

0.4

0.5

Le
af

 a
cc

ur
ac

y

Diabetes130US

0.65 0.70 0.75 0.80 0.85
Accruacy of model

0.4

0.5

0.6

0.7

Le
af

 a
cc

ur
ac

y

electricity

0.550 0.575 0.600 0.625 0.650
Accruacy of model

0.35

0.40

0.45

0.50

0.55

Le
af

 a
cc

ur
ac

y

eye_movements

0.64 0.66 0.68 0.70
Accruacy of model

0.450

0.475

0.500

0.525

0.550

0.575

Le
af

 a
cc

ur
ac

y

Higgs

0.68 0.69 0.70 0.71 0.72 0.73
Accruacy of model

0.3

0.4

0.5

0.6

0.7

Le
af

 a
cc

ur
ac

y

heloc

0.75 0.80 0.85
Accruacy of model

0.4

0.5

0.6

0.7

Le
af

 a
cc

ur
ac

y

house_16H

0.65 0.70 0.75
Accruacy of model

0.40

0.45

0.50

0.55

Le
af

 a
cc

ur
ac

y

jannis

0.750 0.775 0.800 0.825 0.850
Accruacy of model

0.4

0.5

0.6

0.7

Le
af

 a
cc

ur
ac

y

MagicTelescope

0.75 0.80 0.85 0.90
Accruacy of model

0.3

0.4

0.5

0.6

0.7

Le
af

 a
cc

ur
ac

y

MiniBooNE

0.90 0.92 0.94 0.96 0.98
Accruacy of model

0.50

0.55

0.60

0.65

0.70

0.75

Le
af

 a
cc

ur
ac

y

pol

Hybrid tree
Mean OOS Accuracy
Standard deviation

Low-depth tree
Mean OOS Accuracy
Standard deviation

Mean XGBoost
Proposed model
OCT (warmstarted)
CART

Figure C.2: Detailed performance comparison of FCT on numerical datasets

96

................................... C.3. Detailed results

Leaf Accuracy

numerical datasets CART Proposed

bank-marketing 0.4083 0.5837
Bioresponse 0.4738 0.5700
california 0.5538 0.6861
covertype 0.5391 0.6314
credit 0.5153 0.6439
default-of-credit-card-clients 0.3422 0.5136
Diabetes130US 0.4057 0.5204
electricity 0.5404 0.6331
eye_movements 0.4819 0.4265
Higgs 0.4953 0.5698
heloc 0.4909 0.6722
house_16H 0.4985 0.6336
jannis 0.4617 0.5079
MagicTelescope 0.4719 0.6835
MiniBooNE 0.4420 0.5809
pol 0.5680 0.6550
Mean rank 1.9375 1.0625

Table C.6: Numerical datasets. Mean leaf accuracies of models on out-of-sample
data and average ranks.

97

C. Supplementary material

Hybrid-tree Accuracy

numerical datasets CART Proposed XGBoost

bank-marketing 0.8011 0.8003 0.8044
Bioresponse 0.7655 0.7755 0.7920
california 0.8803 0.8914 0.8997
covertype 0.8094 0.8147 0.8190
credit 0.7715 0.7462 0.7738
default-of-credit-card-clients 0.7118 0.7124 0.7156
Diabetes130US 0.6030 0.6051 0.6059
electricity 0.8692 0.8600 0.8683
eye_movements 0.6311 0.6364 0.6554
Higgs 0.6945 0.6992 0.7142
heloc 0.7106 0.7188 0.7183
house_16H 0.8702 0.8726 0.8881
jannis 0.7578 0.7632 0.7778
MagicTelescope 0.8481 0.8518 0.8605
MiniBooNE 0.9184 0.9194 0.9369
pol 0.9804 0.9811 0.9915
Mean rank 2.7500 2.1250 1.1250

Table C.7: Numerical datasets. Mean hybrid tree accuracies of models on
out-of-sample data and average ranks.

98

MASTER‘S THESIS ASSIGNMENT

I. Personal and study details

475701 Personal ID number: Němeček Jiří Student's name:

Faculty of Electrical Engineering Faculty / Institute:

Department / Institute: Department of Computer Science

Open Informatics Study program:

Artificial Intelligence Specialisation:

II. Master’s thesis details

Master’s thesis title in English:

Mixed-integer Programming in Machine Learning: Decision Trees and Neural Networks

Master’s thesis title in Czech:

Smíšené celočíselné programování ve strojovém učení

Guidelines:

Mixed-integer Programming (MIP) is a framework for formulating a number of problems in machine learning (ML) and
prototyping therein. With the increased interest in methods combining symbolic and statistical approaches, this seems
particularly useful. Consider, for instance, training a decision tree with neural networks (NN) with ReLU activations in the
leaf nodes (Zhou & Chen, 2002), whose training can clearly be cast as a MIP using the techniques of (Bertsimas & Dunn,
2017) and (Anderson et al., 2020).

Bibliography / sources:

Zhi-Hua Zhou & Zhao-Qian Chen: Hybrid decision tree. Knowledge-Based Systems, volume 15, Issue 8, pages 515-528
(2002).
Dimitris Bertsimas & Jack Dunn: Optimal classification trees. Machine Learning, volume 106, pages 1039–1082 (2017).
Ross Anderson, Joey Huchette, Will Ma, Christian Tjandraatmadja & Juan Pablo Vielma: Strong mixed-integer programming
formulations for trained neural networks. Mathematical Programming, volume 183, pages 3–39 (2020).

Name and workplace of master’s thesis supervisor:

Mgr. Jakub Mareček, Ph.D. Artificial Intelligence Center FEE

Name and workplace of second master’s thesis supervisor or consultant:

Deadline for master's thesis submission: 26.05.2023 Date of master’s thesis assignment: 31.01.2023

Assignment valid until: 22.09.2024

___________________________ ___________________________ ___________________________
prof. Mgr. Petr Páta, Ph.D.

Dean’s signature

Head of department’s signature Mgr. Jakub Mareček, Ph.D.
Supervisor’s signature

III. Assignment receipt
The student acknowledges that the master’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the master’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VIC CVUT-CZ-ZDP-2015.1

	Introduction
	Why MIP?
	Goals of the thesis
	Use of MIP methods in ML
	Optimizing explanations' validity in Classification trees
	Counterfactual generation using MIP

	Current use of MIP in ML
	Introduction of MIP to ML
	Current state of the art
	Decision trees
	Neural networks
	Further uses

	MIP in ML explainability
	Counterfactual explanations

	Fair explanations using classification trees
	MIP formulation of XCT
	OCT formulation
	Straightforward leaf accuracy formulation
	Optimizable formulation
	Final XCT formulation

	Creating the Hybrid trees
	Tree reduction
	Leaves extension

	Experiments
	Training modes
	Datasets used

	Results
	Comparison to other methods
	Dependance on dataset difficulty
	Required resources
	Helper methods
	Other optimization strategies
	Shorter time
	MIP solve process
	Further Ablation Analyses
	More input data

	Counterfactual optimization
	Encoding of the input
	Mixed polytope
	Additions to the formulation

	Encoding of the neural network
	Modifications

	Counterfact encoding
	Proposed functions
	Entropy-based functions
	Wasserstein-based function

	Conclusion
	Furhter improvements
	Resources

	Acronyms
	Bibliography
	Supplementary material
	Dataset descriptions
	Hyperparameter search distributions
	Detailed results

	Project Specification

